IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004421.html
   My bibliography  Save this article

A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence

Author

Listed:
  • Prince,
  • Hati, Ananda Shankar

Abstract

Energy utilization throughout the world is expanding at an alarming rate. This has just demonstrated its effect on the consumption of fuel resources and natural concerns (a drastic atmospheric deviation and debilitating of the O3 layer). Positively, this heightening propensity of energy inadequacy will get disturbed later on. Effectiveness upgrade activities are viewed as the necessary arrangement in decreasing energy usage and ultimately opposing the worldwide natural effects of the all-out world energy produced, ventilation system, particularly the axial fans, burn-through about 20%. Hence, the essential focus on worldwide energy policy-makers is to upgrade energy effectiveness in the ventilation system. According to the studies, striking energy investment funds can be refined by controlling the ventilation system speed utilizing VFDs. Therefore, studies and investigations center principally around VFD control strategies to improve the ventilation system effectiveness. This article gave state-of-the-artwork on the ventilation system and VSD that reduces the ventilation system’s overall energy consumption. Various energy efficiency strategies, selection of various components, and intelligent flow prediction techniques are represented in this article. Finally, the prospect encounters of AI-based models employed in the environmental area are discussed and proposed.

Suggested Citation

  • Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004421
    DOI: 10.1016/j.rser.2021.111153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    2. Chakraborty, Arindam, 2011. "Advancements in power electronics and drives in interface with growing renewable energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1816-1827, May.
    3. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
    4. De Almeida, A. & Fong, J. & Brunner, C.U. & Werle, R. & Van Werkhoven, M., 2019. "New technology trends and policy needs in energy efficient motor systems - A major opportunity for energy and carbon savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Tirmizi, Syed A. & Gandhidasan, P. & Zubair, Syed M., 2012. "Performance analysis of a chilled water system with various pumping schemes," Applied Energy, Elsevier, vol. 100(C), pages 238-248.
    6. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    7. Lu, Shyi-Min, 2016. "A review of high-efficiency motors: Specification, policy, and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1-12.
    8. Zhang, Shirong & Xia, Xiaohua, 2010. "Optimal control of operation efficiency of belt conveyor systems," Applied Energy, Elsevier, vol. 87(6), pages 1929-1937, June.
    9. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    10. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    11. Mecrow, B.C. & Jack, A.G., 2008. "Efficiency trends in electric machines and drives," Energy Policy, Elsevier, vol. 36(12), pages 4336-4341, December.
    12. Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.
    13. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    14. Barma, M.C. & Saidur, R. & Rahman, S.M.A. & Allouhi, A. & Akash, B.A. & Sait, Sadiq M., 2017. "A review on boilers energy use, energy savings, and emissions reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 970-983.
    15. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    16. Qian, Zhongdong & Wang, Fan & Guo, Zhiwei & Lu, Jie, 2016. "Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode," Renewable Energy, Elsevier, vol. 99(C), pages 1146-1152.
    17. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    18. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    19. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    20. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    21. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    22. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    23. Zhang, Shirong & Xia, Xiaohua, 2011. "Modeling and energy efficiency optimization of belt conveyors," Applied Energy, Elsevier, vol. 88(9), pages 3061-3071.
    24. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    25. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    26. Chatterjee, Arnab & Zhang, Lijun & Xia, Xiaohua, 2015. "Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff," Applied Energy, Elsevier, vol. 146(C), pages 65-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Asif Hussain & Ananda Shankar Hati & Prasun Chakrabarti & Bui Thanh Hung & Vadim Bolshev & Vladimir Panchenko, 2023. "DSVM-Based Model-Free Predictive Current Control of an Induction Motor," Energies, MDPI, vol. 16(15), pages 1-13, July.
    2. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    3. Marian Piwowarski & Damian Jakowski, 2023. "Areas of Fan Research—A Review of the Literature in Terms of Improving Operating Efficiency and Reducing Noise Emissions," Energies, MDPI, vol. 16(3), pages 1-28, January.
    4. Prince, & Hati, Ananda Shankar & Kumar, Prashant, 2023. "An adaptive neural fuzzy interface structure optimisation for prediction of energy consumption and airflow of a ventilation system," Applied Energy, Elsevier, vol. 337(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    2. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    3. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    6. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    7. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    8. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Gómez, Julio R. & Sousa, Vladimir & Cabello Eras, Juan J. & Sagastume Gutiérrez, Alexis & Viego, Percy R. & Quispe, Enrique C. & de León, Gabriel, 2022. "Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors," Energy, Elsevier, vol. 239(PA).
    10. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    11. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    12. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.
    13. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    14. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Ildo Luis Sauer & Hédio Tatizawa, 2021. "Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings," Energies, MDPI, vol. 14(21), pages 1-13, November.
    15. Saidur, R. & Hasanuzzaman, M. & Mahlia, T.M.I. & Rahim, N.A. & Mohammed, H.A., 2011. "Chillers energy consumption, energy savings and emission analysis in an institutional buildings," Energy, Elsevier, vol. 36(8), pages 5233-5238.
    16. Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
    17. Ahmed, Ferdous & Al Amin, Abul Quasem & Hasanuzzaman, M. & Saidur, R., 2013. "Alternative energy resources in Bangladesh and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 698-707.
    18. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    19. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    20. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.