IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7152-d669828.html
   My bibliography  Save this article

Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings

Author

Listed:
  • Danilo Ferreira de Souza

    (Department of Electrical Engineering, Campus Cuiaba, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil
    Institute of Energy and Environment—IEE, University of Sao Paulo—USP, São Paulo 05508-010, Brazil)

  • Emeli Lalesca Aparecida da Guarda

    (Environment Comfort Laboratory, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil)

  • Ildo Luis Sauer

    (Institute of Energy and Environment—IEE, University of Sao Paulo—USP, São Paulo 05508-010, Brazil)

  • Hédio Tatizawa

    (Institute of Energy and Environment—IEE, University of Sao Paulo—USP, São Paulo 05508-010, Brazil)

Abstract

With the current concerns about sustainable development and energy consumption in buildings, water pumping systems have become essential for reducing energy consumption. This research aims to develop guidelines for the energy assessment of water pumping systems in multifamily buildings. The methodological procedures are: (i) definition of the efficiencies of electric motors; (ii) definition of pump efficiency levels; (iii) determination of energy consumption; and (iv) construction of the efficiency scale and guidelines for projects and assessments. The results obtained were that centrifugal pumps with 40% efficiency have higher energy consumption, regardless of the efficiency class of the electric motors, showing a 20% increase in electrical energy consumption. Lower efficiencies directly impact the energy efficiency rating of the water pumping system. Thus the 40% efficiency obtained energy efficiency rating “Very Low—VL” for all motor efficiency classes (between IE1 and IE5). At 60% efficiency, the energy efficiency level of the system was “Average—A”, gradually increasing to “Very High—VH”, as the energy consumption in the pumps decreased and the motors’ energy efficiency classes increased. It is concluded that designers and professionals in the area must consider the efficiency of the pumps, as they play a fundamental role in the classification of the system’s energy efficiency. It is also recommended to verify the energy efficiency of the water pumping system and implement design guidelines so that the pumping system achieves lower energy consumption, contributing to the building’s energy efficiency and sustainability.

Suggested Citation

  • Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Ildo Luis Sauer & Hédio Tatizawa, 2021. "Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings," Energies, MDPI, vol. 14(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7152-:d:669828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Almeida, A. & Fong, J. & Brunner, C.U. & Werle, R. & Van Werkhoven, M., 2019. "New technology trends and policy needs in energy efficient motor systems - A major opportunity for energy and carbon savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    3. Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii & Safarbek Oshurbekov & Dmitry Golovanov, 2020. "Life Cycle Energy Cost Assessment for Pump Units with Various Types of Line-Start Operating Motors Including Cable Losses," Energies, MDPI, vol. 13(14), pages 1-15, July.
    4. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    5. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    6. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    7. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    2. Manickavel Baranidharan & Rassiah Raja Singh, 2022. "AI Energy Optimal Strategy on Variable Speed Drives for Multi-Parallel Aqua Pumping System," Energies, MDPI, vol. 15(12), pages 1-29, June.
    3. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Welitom Ttatom Pereira da Silva & Ildo Luis Sauer & Hédio Tatizawa, 2022. "Perspectives on the Advancement of Industry 4.0 Technologies Applied to Water Pumping Systems: Trends in Building Pumps," Energies, MDPI, vol. 15(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    3. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.
    4. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Danilo Ferreira de Souza & Emeli Lalesca Aparecida da Guarda & Welitom Ttatom Pereira da Silva & Ildo Luis Sauer & Hédio Tatizawa, 2022. "Perspectives on the Advancement of Industry 4.0 Technologies Applied to Water Pumping Systems: Trends in Building Pumps," Energies, MDPI, vol. 15(9), pages 1-17, May.
    6. Gómez, Julio R. & Sousa, Vladimir & Cabello Eras, Juan J. & Sagastume Gutiérrez, Alexis & Viego, Percy R. & Quispe, Enrique C. & de León, Gabriel, 2022. "Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors," Energy, Elsevier, vol. 239(PA).
    7. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    8. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    9. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    10. Johnson, Hilary A. & Simon, Kevin P. & Slocum, Alexander H., 2021. "Data analytics and pump control in a wastewater treatment plant," Applied Energy, Elsevier, vol. 299(C).
    11. Anibal T. de Almeida & Fernando J. T. E. Ferreira & João Fong, 2023. "Perspectives on Electric Motor Market Transformation for a Net Zero Carbon Economy," Energies, MDPI, vol. 16(3), pages 1-16, January.
    12. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    13. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    14. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    15. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    16. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    17. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    18. Mahshad Modiri & Atiye Haj Hasan & Hamid Zafari koloukhi & Fatemeh Rostami & Seyyed Mohammad Tafazzoli & Akram Avami, 2023. "Assessment of water-energy-emissions nexus in wastewater treatment plants using emergy analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11905-11929, October.
    19. Hou, Juan-Juan & Wang, Zhen & Zhang, Jiu-Tian & Yu, Shi-Wei & Liu, Lan-Cui, 2022. "Revealing energy and water hidden in Chinese regional critical carbon supply chains," Energy Policy, Elsevier, vol. 165(C).
    20. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7152-:d:669828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.