IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004760.html
   My bibliography  Save this article

Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump

Author

Listed:
  • Li, Wei
  • Huang, Yuxin
  • Ji, Leilei
  • Ma, Lingling
  • Agarwal, Ramesh K.
  • Awais, Muhammad

Abstract

The global energy shortage is gradually intensifying. A pump is a versatile device with significant power consumption in energy conversion equipment. Of the world's total energy generated, pumps consume about 20%. With the continuous expansion of the application field, the pump's transient working characteristics are increasingly getting important for energy saving and consumption reduction. Due to ignoring the influence of impeller rotational acceleration and fluid inertia, traditional methods have significant errors in predicting transient energy conversion characteristics, which leads to improper design and unreasonable lectotype, resulting in low pump operation efficiency. Improving the prediction accuracy of transient energy characteristics and ultimately improving the pump operation efficiency is considered to be the key solution to reducing energy consumption. Therefore, this research paper proposes a prediction model of transient energy characteristics in a mixed-flow pump. Firstly, the dynamic hydraulic torque, an important parameter of energy growth during the start-up process was calculated according to the momentum moment equation. Secondly, based on the torque energy balance equation and the relative Bernoulli equation, the transient head expression during the start-up process of the mixed-flow pump is derived, and the saddle area correction is carried out. Finally, considering the additional shaft power loss caused by the pump's backflow and clearance leakage flow, a calculation method for the instantaneous energy conversion efficiency of the mixed-flow pump is established. The accuracy of the model is compared with traditional quasi-steady-state calculation results. The results show that the predicted head of the model is in good agreement with the test head, the head estimation error is reduced from 15% to 5%, and the modified head in the saddle area is closer to the test value. In addition, this study also shows the ability of the model to simulate different start-up modes and start-up times. The models presented in this paper help guide the transient hydraulic design and prediction of transient energy characteristics of pumps.

Suggested Citation

  • Li, Wei & Huang, Yuxin & Ji, Leilei & Ma, Lingling & Agarwal, Ramesh K. & Awais, Muhammad, 2023. "Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004760
    DOI: 10.1016/j.energy.2023.127082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    2. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    3. Ji, Leilei & Li, Wei & Shi, Weidong & Tian, Fei & Agarwal, Ramesh, 2021. "Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis," Energy, Elsevier, vol. 236(C).
    4. Ji, Leilei & Li, Wei & Shi, Weidong & Chang, Hao & Yang, Zhenyu, 2020. "Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis," Energy, Elsevier, vol. 199(C).
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    6. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    7. Li, Wei & Li, Enda & Ji, Leilei & Zhou, Ling & Shi, Weidong & Zhu, Yong, 2020. "Mechanism and propagation characteristics of rotating stall in a mixed-flow pump," Renewable Energy, Elsevier, vol. 153(C), pages 74-92.
    8. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    2. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    3. Oleksandr Ivchenko & Vladyslav Andrusiak & Vladyslav Kondus & Ivan Pavlenko & Serhii Petrenko & Andżelika Krupińska & Sylwia Włodarczak & Magdalena Matuszak & Marek Ochowiak, 2023. "Energy Efficiency Indicator of Pumping Equipment Usage," Energies, MDPI, vol. 16(15), pages 1-13, August.
    4. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    5. Liu, Ming & Tan, Lei & Zhao, Xuechu & Ma, Can & Gou, Jinlan, 2024. "Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system," Energy, Elsevier, vol. 299(C).
    6. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    2. Li, Wei & Long, Yu & Ji, Leilei & Li, Haoming & Li, Shuo & Chen, Yunfei & Yang, Qiaoyue, 2024. "Effect of circumferential spokes on the rotating stall flow field of mixed-flow pump," Energy, Elsevier, vol. 290(C).
    3. Wang, Like & Feng, Jianjun & Lu, Jinling & Zhu, Guojun & Wang, Wei, 2024. "Novel bionic wave-shaped tip clearance toward improving hydrofoil energy performance and suppressing tip leakage vortex," Energy, Elsevier, vol. 290(C).
    4. Yang, Gang & Shen, Xi & Shi, Lei & Zhang, Desheng & Zhao, Xutao & (Bart) van Esch, B.P.M., 2023. "Numerical investigation of hump characteristic improvement in a large vertical centrifugal pump with special emphasis on energy loss mechanism," Energy, Elsevier, vol. 273(C).
    5. Ye, Weixiang & Geng, Chen & Luo, Xianwu, 2022. "Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean," Renewable Energy, Elsevier, vol. 185(C), pages 1343-1361.
    6. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    7. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    8. Tong Lin & Jian Li & Baofei Xie & Jianrong Zhang & Zuchao Zhu & Hui Yang & Xiaoming Wen, 2022. "Vortex-Pressure Fluctuation Interaction in the Outlet Duct of Centrifugal Pump as Turbines (PATs)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    9. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    10. Zhou, Ling & Hang, Jianwei & Bai, Ling & Krzemianowski, Zbigniew & El-Emam, Mahmoud A. & Yasser, Eman & Agarwal, Ramesh, 2022. "Application of entropy production theory for energy losses and other investigation in pumps and turbines: A review," Applied Energy, Elsevier, vol. 318(C).
    11. Li, Wei & Ji, Leilei & Li, Enda & Shi, Weidong & Agarwal, Ramesh & Zhou, Ling, 2021. "Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition," Renewable Energy, Elsevier, vol. 167(C), pages 740-760.
    12. Inhestern, Lukas Benjamin & Peitsch, Dieter & Paniagua, Guillermo, 2024. "Flow irreversibility and heat transfer effects on turbine efficiency," Applied Energy, Elsevier, vol. 353(PA).
    13. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    14. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    15. Mu, Tong & Zhang, Rui & Xu, Hui & Fei, Zhaodan & Feng, Jiangang & Jin, Yan & Zheng, Yuan, 2023. "Improvement of energy performance of the axial-flow pump by groove flow control technology based on the entropy theory," Energy, Elsevier, vol. 274(C).
    16. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    17. He, Jiawei & Si, Qiaorui & Sun, Wentao & Liu, Jinfeng & Miao, Senchun & Wang, Xiaohui & Wang, Peng & Wang, Chenguang, 2023. "Study on the energy loss characteristics of ultra-low specific speed PAT under different short blade lengths based on entropy production method," Energy, Elsevier, vol. 283(C).
    18. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    19. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    20. Liu, Ming & Tan, Lei & Zhao, Xuechu & Ma, Can & Gou, Jinlan, 2024. "Theoretical model on transient performance of a centrifugal pump under start-up conditions in pumped-storage system," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.