IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v175y2023ics1364032122010218.html
   My bibliography  Save this article

A review of operational control strategies in water supply systems for energy and cost efficiency

Author

Listed:
  • Reis, Ana L.
  • Lopes, Marta A.R.
  • Andrade-Campos, A.
  • Henggeler Antunes, Carlos

Abstract

Water supply systems (WSS) are intensive energy demanding infrastructures relying on water storage tanks and pumping systems for delivering water to consumers which face challenges such as increasing water demand, aging infrastructure and rising energy prices. The energy transition, namely in the power sector, offers opportunities for water utilities to provide demand-side management with mutual benefits for both sectors. Current investments in renewable energy sources for self-consumption contribute to reduce the impact of energy price fluctuations on water utilities’ bills. These opportunities increase the available resources to be managed, making the efficient operational management of WSS a complex task. A systematization of control strategies that can be used in this context are lacking in the literature. The aim of this work is to review and systematize operational control strategies to reduce energy and costs in WSS by analyzing existing literature. The participation in demand response mechanisms, adoption of energy efficiency measures, and utilization of renewable energy sources are explored. The main original contribution of this work relies on investigating control strategies considering the opportunities fostered within the energy transition for water utilities by addressing the WSS resources management from an integrated (supply and demand) perspective and the importance of decision support tools to drive this integration. Major research gaps identified include the need for the development of appropriate tools to support real-time decision making in WSS operation. Research on optimization techniques applied to complex water networks and extended periods is still scarce, which opens promising research avenues.

Suggested Citation

  • Reis, Ana L. & Lopes, Marta A.R. & Andrade-Campos, A. & Henggeler Antunes, Carlos, 2023. "A review of operational control strategies in water supply systems for energy and cost efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032122010218
    DOI: 10.1016/j.rser.2022.113140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122010218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kernan, R. & Liu, X. & McLoone, S. & Fox, B., 2017. "Demand side management of an urban water supply using wholesale electricity price," Applied Energy, Elsevier, vol. 189(C), pages 395-402.
    2. Mkireb, Chouaïb & Dembélé, Abel & Jouglet, Antoine & Denoeux, Thierry, 2019. "Robust Optimization of Demand Response Power Bids for Drinking Water Systems," Applied Energy, Elsevier, vol. 238(C), pages 1036-1047.
    3. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique Bonet & María Teresa Yubero, 2024. "Optimal Pumping Flow Algorithm to Improve Pumping Station Operations in Irrigation Systems," Agriculture, MDPI, vol. 14(3), pages 1-26, March.
    2. Alharbi, Talal & Abo-Elyousr, Farag K. & Abdelshafy, Alaaeldin M., 2024. "Efficient Coordination of Renewable Energy Resources through Optimal Reversible Pumped Hydro-Storage Integration for Autonomous Microgrid Economic Operation," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Majid, A. & van Zyl, J.E. & Hall, J.W., 2022. "The influence of temporal variability and reservoir management on demand-response in the water sector," Applied Energy, Elsevier, vol. 305(C).
    3. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    4. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    5. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
    6. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
    7. Liu, Jiahong & Wang, Jia & Ding, Xiangyi & Shao, Weiwei & Mei, Chao & Li, Zejin & Wang, Kaibo, 2020. "Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system," Applied Energy, Elsevier, vol. 278(C).
    8. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    9. Zhang, Liwen & Wang, Xin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2023. "Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration," Energy, Elsevier, vol. 268(C).
    10. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    11. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    12. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2021. "Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition," Applied Energy, Elsevier, vol. 299(C).
    13. Ning Zhang & Delin Li & Junxian Jiang & Bo Gao & Dan Ni & Anthony Akurugo Alubokin & Wenbin Zhang, 2023. "Experimental Investigation on Velocity Fluctuation in a Vaned Diffuser Centrifugal Pump Measured by Laser Doppler Anemometry," Energies, MDPI, vol. 16(7), pages 1-17, April.
    14. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    15. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    16. Chen, Weisheng & Li, Yaojun & Liu, Zhuqing & Hong, Yiping, 2023. "Understanding of energy conversion and losses in a centrifugal pump impeller," Energy, Elsevier, vol. 263(PB).
    17. Bozorgasareh, Hamidreza & Khalesi, Javad & Jafari, Mohammad & Gazori, Heshmat Olah, 2021. "Performance improvement of mixed-flow centrifugal pumps with new impeller shrouds: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 163(C), pages 635-648.
    18. Rogger José Andrade-Cedeno & Jesús Alberto Pérez-Rodríguez & Carlos David Amaya-Jaramillo & Ciaddy Gina Rodríguez-Borges & Yolanda Eugenia Llosas-Albuerne & José David Barros-Enríquez, 2022. "Numerical Study of Constant Pressure Systems with Variable Speed Electric Pumps," Energies, MDPI, vol. 15(5), pages 1-22, March.
    19. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    20. Mennatalla Elbalki & Mostafa F. Shaaban & Ahmed Osman & Ariana Pietrasanta & Mohammed Kamil & Abdelfatah Ali, 2024. "Optimizing Integrated Water and Electrical Networks through a Holistic Water–Energy Nexus Approach," Sustainability, MDPI, vol. 16(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:175:y:2023:i:c:s1364032122010218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.