IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921007236.html
   My bibliography  Save this article

Improving energy efficiency of individual centrifugal pump systems using model-free and on-line optimization methods

Author

Listed:
  • Hieninger, Thomas
  • Schmidt-Vollus, Ronald
  • Schlücker, Eberhard

Abstract

Pump systems around the world account for a high percentage of electrical energy consumption. The energy efficiency of these systems can be improved using control algorithms to determine appropriate operating points. The problem that arises is that computed operating points deviate from real operating points. This is due to deviations of the affinity laws, inaccurate information about pump characteristics, and plant behavior. In order to address this problem, we will present model-free optimization methods that can optimize various pump systems during ongoing operation. First, we will classify different pump systems. Based on this categorization, we will then analyze characteristic systems with regard to their energetic optimum. The resulting findings will enable us to identify suitable optimization algorithms. These model-free optimization algorithms take the form of an extremum seeking control in combination with a Kalman filter, the Nelder Mead algorithm, and a dynamic optimization method. After describing these algorithms, we will optimize and validate three sample classes of pump systems using the respective appropriate optimization strategy. The three classes represent a single-pump system, a multiple parallel pump system and a pump storage system. We can see that all optimization strategies achieve the energetic optimum. We can identify savings of between 7.9% and 50%, depending on the system in question. Finally, we will present a best-fit model-free optimization strategy for each class, and system operators can employ this strategy to ensure energy-optimized operation of their specific system.

Suggested Citation

  • Hieninger, Thomas & Schmidt-Vollus, Ronald & Schlücker, Eberhard, 2021. "Improving energy efficiency of individual centrifugal pump systems using model-free and on-line optimization methods," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921007236
    DOI: 10.1016/j.apenergy.2021.117311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    2. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    3. Coelho, B. & Andrade-Campos, A., 2014. "Efficiency achievement in water supply systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 59-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Yin & Lin Shi & Junru Luo & Shoukun Xu & Yang Yuan & Xinxin Tan & Jiaqun Zhu, 2023. "Pump Feature Construction and Electrical Energy Consumption Prediction Based on Feature Engineering and LightGBM Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-17, January.
    2. Li, Wei & Yang, Qiaoyue & Yang, Yi & Ji, Leilei & Shi, Weidong & Agarwal, Ramesh, 2024. "Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics," Applied Energy, Elsevier, vol. 362(C).
    3. Manickavel Baranidharan & Rassiah Raja Singh, 2022. "AI Energy Optimal Strategy on Variable Speed Drives for Multi-Parallel Aqua Pumping System," Energies, MDPI, vol. 15(12), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).
    2. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    3. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    4. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. José Ignacio Sarasúa & Guillermo Martínez-Lucas & Carlos A. Platero & José Ángel Sánchez-Fernández, 2018. "Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System," Energies, MDPI, vol. 11(11), pages 1-17, October.
    6. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    7. Gan, Xingcheng & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Yin, Tingyun, 2022. "Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump," Energy, Elsevier, vol. 240(C).
    8. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).
    9. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
    10. Breitmoser, Yves & Valasek, Justin, 2017. "A rationale for unanimity in committees," Discussion Papers, Research Unit: Economics of Change SP II 2017-308, WZB Berlin Social Science Center.
    11. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    12. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Liu, Jiahong & Wang, Jia & Ding, Xiangyi & Shao, Weiwei & Mei, Chao & Li, Zejin & Wang, Kaibo, 2020. "Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system," Applied Energy, Elsevier, vol. 278(C).
    14. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    15. Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
    16. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    17. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    19. Zhang, Liwen & Wang, Xin & Wu, Peng & Huang, Bin & Wu, Dazhuan, 2023. "Optimization of a centrifugal pump to improve hydraulic efficiency and reduce hydro-induced vibration," Energy, Elsevier, vol. 268(C).
    20. Khalid Mohammed Saffer Alzaidi & Oguz Bayat & Osman N. Uçan, 2018. "A Heuristic Approach for Optimal Planning and Operation of Distribution Systems," Journal of Optimization, Hindawi, vol. 2018, pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921007236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.