IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v167y2016icp189-200.html
   My bibliography  Save this item

Economic valuation of heat pumps and electric boilers in the Danish energy system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ji, Huichao & Wang, Haixin & Yang, Junyou & Feng, Jiawei & Yang, Yongyue & Okoye, Martin Onyeka, 2021. "Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks," Energy, Elsevier, vol. 234(C).
  2. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
  3. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Li, Zhengshuo & Pan, Zhaoguang & Wu, Wenchuan, 2019. "A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias," Energy, Elsevier, vol. 181(C), pages 840-852.
  4. Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
  5. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
  6. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  7. Quirosa, Gonzalo & Torres, Miguel & Chacartegui, Ricardo, 2022. "Analysis of the integration of photovoltaic excess into a 5th generation district heating and cooling system for network energy storage," Energy, Elsevier, vol. 239(PC).
  8. Pilpola, Sannamari & Lund, Peter D., 2020. "Analyzing the effects of uncertainties on the modelling of low-carbon energy system pathways," Energy, Elsevier, vol. 201(C).
  9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  10. Jing, Rui & Kuriyan, Kamal & Lin, Jian & Shah, Nilay & Zhao, Yingru, 2020. "Quantifying the contribution of individual technologies in integrated urban energy systems – A system value approach," Applied Energy, Elsevier, vol. 266(C).
  11. Guo, Xusheng & Lou, Suhua & Chen, Zhe & Wu, Yaowu, 2022. "Flexible operation of integrated energy system with HVDC infeed considering multi-retrofitted combined heat and power units," Applied Energy, Elsevier, vol. 325(C).
  12. Kouhia, Mikko & Laukkanen, Timo & Holmberg, Henrik & Ahtila, Pekka, 2019. "District heat network as a short-term energy storage," Energy, Elsevier, vol. 177(C), pages 293-303.
  13. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
  14. Gao, Shuang & Li, Hailong & Hou, Yichen & Yan, Jinyue, 2023. "Benefits of integrating power-to-heat assets in CHPs," Applied Energy, Elsevier, vol. 335(C).
  15. Yang, Dongfeng & Xu, Yang & Liu, Xiaojun & Jiang, Chao & Nie, Fanjie & Ran, Zixu, 2022. "Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture Technologies," Energy, Elsevier, vol. 253(C).
  16. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
  17. Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
  18. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Decision rules for economic summer-shutdown of production units in large district heating systems," Applied Energy, Elsevier, vol. 208(C), pages 1128-1138.
  19. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
  20. Ali Hasanbeigi & M. Jibran S. Zuberi, 2022. "Electrification of Steam and Thermal Oil Boilers in the Textile Industry: Techno-Economic Analysis for China, Japan, and Taiwan," Energies, MDPI, vol. 15(23), pages 1-21, December.
  21. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Hu, Eric & Zhang, Nan & Song, Jifeng, 2022. "Performance analysis and capacity optimization of a solar aided coal-fired combined heat and power system," Energy, Elsevier, vol. 239(PB).
  22. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
  23. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Huang, Chang & Hu, Eric & Yu, Gang & Zhang, Yumeng & Zhang, Nan, 2021. "Simulation study on a novel solar aided combined heat and power system for heat-power decoupling," Energy, Elsevier, vol. 220(C).
  24. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  25. Ma, Xuran & Wang, Meng & Wang, Peng & Wang, Yixin & Mao, Ding & Kosonen, Risto, 2024. "Energy supply structure optimization of integrated energy system considering load uncertainty at the planning stage," Energy, Elsevier, vol. 305(C).
  26. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
  27. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
  28. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
  29. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
  30. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
  31. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
  32. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
  33. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
  34. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
  35. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
  36. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  37. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
  38. Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2016. "Impacts of electricity grid tariffs on flexible use of electricity to heat generation," Energy, Elsevier, vol. 115(P3), pages 1679-1687.
  39. Bo, Yaolong & Xia, Yanghong & Wei, Wei & Li, Zichen & Zhao, Bo & Lv, Zeyan, 2023. "Hyperfine optimal dispatch for integrated energy microgrid considering uncertainty," Applied Energy, Elsevier, vol. 334(C).
  40. Hvelplund, Frede & Østergaard, Poul Alberg & Meyer, Niels I., 2017. "Incentives and barriers for wind power expansion and system integration in Denmark," Energy Policy, Elsevier, vol. 107(C), pages 573-584.
  41. Zhang, Hui & Hou, Hongjuan & Ding, Zeyu & Hu, Eric, 2024. "Improving capacity configuration and load scheduling for an integrated multi-sourced cogeneration system," Energy, Elsevier, vol. 306(C).
  42. Liu, Miaomiao & Liu, Ming & Wang, Yu & Chen, Weixiong & Yan, Junjie, 2021. "Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat–power decoupling," Energy, Elsevier, vol. 229(C).
  43. Daniela Guericke & Ignacio Blanco & Juan M. Morales & Henrik Madsen, 2020. "A two-phase stochastic programming approach to biomass supply planning for combined heat and power plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 863-900, December.
  44. Tian, Xueyu & Zhou, Yilun & Morris, Brianna & You, Fengqi, 2022. "Sustainable design of Cornell University campus energy systems toward climate neutrality and 100% renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  45. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2019. "Cost sensitivity of optimal sector-coupled district heating production systems," Energy, Elsevier, vol. 166(C), pages 624-636.
  46. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
  47. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).
  48. Tian, Xueyu & You, Fengqi, 2024. "Broaden sustainable design and optimization of decarbonized campus Energy systems with scope 3 emissions accounting and social ramification analysis," Applied Energy, Elsevier, vol. 373(C).
  49. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
  50. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
  51. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
  52. Yan, Hongzhi & Hu, Bin & Wang, Ruzhu, 2021. "Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  53. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  54. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  55. Siddique, Muhammad Bilal & Keles, Dogan & Scheller, Fabian & Nielsen, Per Sieverts, 2024. "Dispatch strategies for large-scale heat pump based district heating under high renewable share and risk-aversion: A multistage stochastic optimization approach," Energy Economics, Elsevier, vol. 136(C).
  56. Liang Tian & Yunlei Xie & Bo Hu & Xinping Liu & Tuoyu Deng & Huanhuan Luo & Fengqiang Li, 2019. "A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage," Energies, MDPI, vol. 12(17), pages 1-27, August.
  57. Wang, Jiawei & You, Shi & Zong, Yi & Cai, Hanmin & Træholt, Chresten & Dong, Zhao Yang, 2019. "Investigation of real-time flexibility of combined heat and power plants in district heating applications," Applied Energy, Elsevier, vol. 237(C), pages 196-209.
  58. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
  59. Xiaojuan Han & Feng Wang & Chunguang Tian & Kai Xue & Junfeng Zhang, 2018. "Economic Evaluation of Actively Consuming Wind Power for an Integrated Energy System Based on Game Theory," Energies, MDPI, vol. 11(6), pages 1-25, June.
  60. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
  61. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
  62. Hao, Junhong & Tian, Liang & Yang, Yunxi & Feng, Xiaolong & Liang, Lu & Hong, Feng & Du, Xiaoze, 2024. "A novel asynchronous time-scale holistic control method for heating system based on the energy state space," Energy, Elsevier, vol. 290(C).
  63. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
  64. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  65. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
  66. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
  67. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.