IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics030626191932029x.html
   My bibliography  Save this article

A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis

Author

Listed:
  • Moser, A.
  • Muschick, D.
  • Gölles, M.
  • Nageler, P.
  • Schranzhofer, H.
  • Mach, T.
  • Ribas Tugores, C.
  • Leusbrock, I.
  • Stark, S.
  • Lackner, F.
  • Hofer, A.

Abstract

The continuous increase of (volatile) renewable energy production and the coupling of different energy sectors such as heating, cooling and electricity have significantly increased the complexity of urban energy systems. Such multi-energy systems (MES) can be operated more efficiently with the aid of optimization-based energy management systems (EMS). However, most existing EMS are tailor-made for one specific system or class of systems, i.e.are not generally applicable. Furthermore, only limited information on the actual savings potential of the usage of an EMS under realistic conditions is available. Therefore, this paper presents a novel modular modeling approach for an EMS for urban MES, which also enables the modeling of complex system configurations. To assess the actual savings potential of the proposed EMS, a comprehensive case study was carried out. In the course of this the influence of different user behavior, changing climatic conditions and forecast errors on the savings potential was analyzed by comparing it with a conventional control strategy. The results showed that using the proposed EMS in conjunction with supplementary system components (thermal energy storage and battery) an annual cost savings potential of between 3 and 6% could be achieved.

Suggested Citation

  • Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s030626191932029x
    DOI: 10.1016/j.apenergy.2019.114342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191932029X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    3. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    4. Nageler, P. & Zahrer, G. & Heimrath, R. & Mach, T. & Mauthner, F. & Leusbrock, I. & Schranzhofer, H. & Hochenauer, C., 2017. "Novel validated method for GIS based automated dynamic urban building energy simulations," Energy, Elsevier, vol. 139(C), pages 142-154.
    5. Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
    6. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    7. Jens Weibezahn & Mario Kendziorski, 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language," Energies, MDPI, vol. 12(6), pages 1-21, March.
    8. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    9. Li, Zhengmao & Xu, Yan, 2019. "Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties," Applied Energy, Elsevier, vol. 240(C), pages 719-729.
    10. Barbara Mayer & Michaela Killian & Martin Kozek, 2017. "Hierarchical Model Predictive Control for Sustainable Building Automation," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    11. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    12. Englmair, Gerald & Moser, Christoph & Schranzhofer, Hermann & Fan, Jianhua & Furbo, Simon, 2019. "A solar combi-system utilizing stable supercooling of sodium acetate trihydrate for heat storage: Numerical performance investigation," Applied Energy, Elsevier, vol. 242(C), pages 1108-1120.
    13. Long, Sebastian & Marjanovic, Ognjen & Parisio, Alessandra, 2019. "Generalised control-oriented modelling framework for multi-energy systems," Applied Energy, Elsevier, vol. 235(C), pages 320-331.
    14. Nigitz, Thomas & Gölles, Markus, 2019. "A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers," Applied Energy, Elsevier, vol. 241(C), pages 73-81.
    15. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    16. Weitzel, Timm & Glock, C. H., 2018. "Energy Management for Stationary Electric Energy Storage Systems: A Systematic Literature Review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88880, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Schweiger, Gerald & Heimrath, Richard & Falay, Basak & O'Donovan, Keith & Nageler, Peter & Pertschy, Reinhard & Engel, Georg & Streicher, Wolfgang & Leusbrock, Ingo, 2018. "District energy systems: Modelling paradigms and general-purpose tools," Energy, Elsevier, vol. 164(C), pages 1326-1340.
    18. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasper, Lukas & Schwarzmayr, Paul & Birkelbach, Felix & Javernik, Florian & Schwaiger, Michael & Hofmann, René, 2024. "A digital twin-based adaptive optimization approach applied to waste heat recovery in green steel production: Development and experimental investigation," Applied Energy, Elsevier, vol. 353(PB).
    2. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Sajjad Ali & Imran Khan & Sadaqat Jan & Ghulam Hafeez, 2021. "An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid," Energies, MDPI, vol. 14(8), pages 1-29, April.
    4. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    5. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    6. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
    7. Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
    8. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    9. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    10. Chen Yang & Tao Zhang & Zonglong Zhang & Li Sun, 2022. "MLD–MPC for Ultra-Supercritical Circulating Fluidized Bed Boiler Unit Using Subspace Identification," Energies, MDPI, vol. 15(15), pages 1-26, July.
    11. Fahad R. Albogamy & Sajjad Ali Khan & Ghulam Hafeez & Sadia Murawwat & Sheraz Khan & Syed Irtaza Haider & Abdul Basit & Klaus-Dieter Thoben, 2022. "Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    12. De Mel, Ishanki & Klymenko, Oleksiy V. & Short, Michael, 2024. "Discrete optimal designs for distributed energy systems with nonconvex multiphase optimal power flow," Applied Energy, Elsevier, vol. 353(PB).
    13. Muschick, D. & Zlabinger, S. & Moser, A. & Lichtenegger, K. & Gölles, M., 2022. "A multi-layer model of stratified thermal storage for MILP-based energy management systems," Applied Energy, Elsevier, vol. 314(C).
    14. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    15. Vahid-Ghavidel, Morteza & Shafie-khah, Miadreza & Javadi, Mohammad S. & Santos, Sérgio F. & Gough, Matthew & Quijano, Darwin A. & Catalao, Joao P.S., 2023. "Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system," Energy, Elsevier, vol. 265(C).
    16. Bartolucci, L. & Cordiner, S. & Mulone, V. & Pasquale, S. & Sbarra, A., 2022. "Design and management strategies for low emission building-scale Multi Energy Systems," Energy, Elsevier, vol. 239(PB).
    17. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    18. Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
    19. Zhaoyu Qi & Shitao Peng & Peisen Wu & Ming-Lang Tseng, 2024. "Renewable Energy Distributed Energy System Optimal Configuration and Performance Analysis: Improved Zebra Optimization Algorithm," Sustainability, MDPI, vol. 16(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    4. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    5. Çiçek, Alper & Şengör, İbrahim & Erenoğlu, Ayşe Kübra & Erdinç, Ozan, 2020. "Decision making mechanism for a smart neighborhood fed by multi-energy systems considering demand response," Energy, Elsevier, vol. 208(C).
    6. Nageler, P. & Heimrath, R. & Mach, T. & Hochenauer, C., 2019. "Prototype of a simulation framework for georeferenced large-scale dynamic simulations of district energy systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).
    8. Soodabeh Ghalambaz & Christopher Neil Hulme, 2022. "A Scientometric Analysis of Energy Management in the Past Five Years (2018–2022)," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    9. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    12. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    13. Johan Simonsson & Khalid Tourkey Atta & Gerald Schweiger & Wolfgang Birk, 2021. "Experiences from City-Scale Simulation of Thermal Grids," Resources, MDPI, vol. 10(2), pages 1-20, January.
    14. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    15. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    16. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    17. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
    18. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    19. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    20. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s030626191932029x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.