Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120833
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ghadimi, P. & Kara, S. & Kornfeld, B., 2014. "The optimal selection of on-site CHP systems through integrated sizing and operational strategy," Applied Energy, Elsevier, vol. 126(C), pages 38-46.
- Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
- Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
- Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
- Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
- Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
- Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
- Rech, Sergio & Toffolo, Andrea & Lazzaretto, Andrea, 2012. "TSO-STO: A two-step approach to the optimal operation of heat storage systems with variable temperature tanks," Energy, Elsevier, vol. 45(1), pages 366-374.
- Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
- Rinne, S. & Syri, S., 2015. "The possibilities of combined heat and power production balancing large amounts of wind power in Finland," Energy, Elsevier, vol. 82(C), pages 1034-1046.
- Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
- Al-Mansour, Fouad & Kožuh, Mitja, 2007. "Risk analysis for CHP decision making within the conditions of an open electricity market," Energy, Elsevier, vol. 32(10), pages 1905-1916.
- Christidis, Andreas & Koch, Christoph & Pottel, Lothar & Tsatsaronis, George, 2012. "The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets," Energy, Elsevier, vol. 41(1), pages 75-82.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
- Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
- Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
- Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
- Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
- Lund, H. & Siupsinskas, G. & Martinaitis, V., 2005. "Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania," Applied Energy, Elsevier, vol. 82(3), pages 214-227, November.
- Wolf-Peter Schill & Michael Pahle & Christian Gambardella, 2017. "Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
- Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
- Naranjo Palacio, Santiago & Valentine, Keenan F. & Wong, Myra & Zhang, K. Max, 2014. "Reducing power system costs with thermal energy storage," Applied Energy, Elsevier, vol. 129(C), pages 228-237.
- Böttger, Diana & Götz, Mario & Theofilidi, Myrto & Bruckner, Thomas, 2015. "Control power provision with power-to-heat plants in systems with high shares of renewable energy sources – An illustrative analysis for Germany based on the use of electric boilers in district heatin," Energy, Elsevier, vol. 82(C), pages 157-167.
- Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
- Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
- Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Pan & Gou, Feifei & Xu, Wenpan & Shi, Honghui & Wang, Jiangfeng, 2023. "Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment," Energy, Elsevier, vol. 263(PC).
- Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
- Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
- Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
- Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
- Wang, Runchen & Du, Xiaonan & Shi, Yuetao & Deng, Weipeng & Wang, Yuhao & Sun, Fengzhong, 2024. "A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability," Energy, Elsevier, vol. 295(C).
- Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
- Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
- Wang, Yanhong & Zou, Zhihong & Lu, Ke & Li, Qi & Li, Liyan, 2024. "Probing of operation economy for coal-fired unit under low loads with two fixed boundary conditions," Energy, Elsevier, vol. 288(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
- Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
- Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
- Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
- Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
- Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
- Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
- Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
- Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage," Energy, Elsevier, vol. 155(C), pages 620-629.
- Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
- Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
- Hu, Kang & Chen, Lei & Chen, Qun & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2017. "Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system," Energy, Elsevier, vol. 124(C), pages 640-651.
- Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
- Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
More about this item
Keywords
Combined heat and power (CHP); Wind power accommodation ability; Coal consumption; Heat–power characteristic; Decoupling technology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221010811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.