IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920308692.html
   My bibliography  Save this article

Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power

Author

Listed:
  • Zhang, Menglin
  • Wu, Qiuwei
  • Wen, Jinyu
  • Pan, Bo
  • Qi, Shiqiang

Abstract

Using the improved flexibility from the district heating system with multiple flexible devices is an effective solution to ensure the cost-effective and secure operation of the integrated energy system with high penetration of renewables. This paper exploits the improved flexibility of the integrated electricity and heat systems by using reserves from multiple flexible devices to accommodate more wind power and reduce operational costs. A two-stage stochastic optimal dispatching scheme is proposed for the integrated electricity and heat system considering both power networks and heat pipelines, and reserves from the condensing combined heat and power units, heat pumps, electric boilers, and heat storage tanks. The proposed scheme balances the power and heat sectors both in the day-ahead and real-time stages with the synergy of different flexible devices and linkage for each device in the two stages. A scenario generation method considering spatial-temporal correlation is proposed to provide reasonable wind power profiles for the two-stage dispatch scheme. The Gaussian mixture model and exponential function are used to construct the spatial and temporal correlation, respectively, and the Gibbs sampling is utilized to reduce the sampling complexity. The case studies were conducted on a 6-bus integrated electricity and heat system and a practical integrated energy system in Northern China. The results show that utilizing the scenario set with spatial-temporal correlation and improved flexibility can effectively reduce the operational cost and wind power curtailment.

Suggested Citation

  • Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308692
    DOI: 10.1016/j.apenergy.2020.115357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Shaojun & Tang, Weichu & Wu, Qiuwei & Li, Canbing, 2019. "Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming," Energy, Elsevier, vol. 179(C), pages 464-474.
    2. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2016. "Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow," Applied Energy, Elsevier, vol. 167(C), pages 230-243.
    3. Gan, Wei & Ai, Xiaomeng & Fang, Jiakun & Yan, Mingyu & Yao, Wei & Zuo, Wenping & Wen, Jinyu, 2019. "Security constrained co-planning of transmission expansion and energy storage," Applied Energy, Elsevier, vol. 239(C), pages 383-394.
    4. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
    5. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    6. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    7. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    8. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    9. Hong Lu & Caixia Wang & Qionghui Li & Ryan Wiser & Kevin Porter, 2019. "Reducing wind power curtailment in China: comparing the roles of coal power flexibility and improved dispatch," Climate Policy, Taylor & Francis Journals, vol. 19(5), pages 623-635, May.
    10. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    11. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    12. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    13. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    14. Liao, Shiwu & Yao, Wei & Han, Xingning & Wen, Jinyu & Cheng, Shijie, 2017. "Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data," Applied Energy, Elsevier, vol. 203(C), pages 816-828.
    15. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    16. Lahdelma, Risto & Hakonen, Henri, 2003. "An efficient linear programming algorithm for combined heat and power production," European Journal of Operational Research, Elsevier, vol. 148(1), pages 141-151, July.
    17. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    18. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    19. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    20. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    21. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    22. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Weiye & Xu, Siyu & Liu, Jiawei & Zhu, Jizhong & Luo, Qingju, 2023. "Participation of strategic district heating networks in electricity markets: An arbitrage mechanism and its equilibrium analysis," Applied Energy, Elsevier, vol. 350(C).
    2. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    3. Egging-Bratseth, Ruud & Kauko, Hanne & Knudsen, Brage Rugstad & Bakke, Sara Angell & Ettayebi, Amina & Haufe, Ina Renate, 2021. "Seasonal storage and demand side management in district heating systems with demand uncertainty," Applied Energy, Elsevier, vol. 285(C).
    4. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    5. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).
    6. Quan, Hao & Lv, Junjie & Guo, Jian & Zhang, Wenjie, 2022. "Investigation of spatial correlation on optimal power flow with high penetration of wind power: A comparative study," Applied Energy, Elsevier, vol. 316(C).
    7. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Xue, Xizhen & Lin, Zhongwei & Fang, Fang, 2021. "Real-time optimal operation of integrated electricity and heat system considering reserve provision of large-scale heat pumps," Energy, Elsevier, vol. 237(C).
    8. Wu, Min & Xu, Jiazhu & Shi, Zhenglu, 2023. "Low carbon economic dispatch of integrated energy system considering extended electric heating demand response," Energy, Elsevier, vol. 278(PA).
    9. Wang, Zekai & Ding, Tao & Jia, Wenhao & Huang, Can & Mu, Chenggang & Qu, Ming & Shahidehpour, Mohammad & Yang, Yongheng & Blaabjerg, Frede & Li, Li & Wang, Kang & Chi, Fangde, 2022. "Multi-stage stochastic programming for resilient integrated electricity and natural gas distribution systems against typhoon natural disaster attacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Tan, Jin & Wu, Qiuwei & Zhang, Menglin & Wei, Wei & Liu, Feng & Pan, Bo, 2021. "Chance-constrained energy and multi-type reserves scheduling exploiting flexibility from combined power and heat units and heat pumps," Energy, Elsevier, vol. 233(C).
    11. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "A two-stage energy management for heat-electricity integrated energy system considering dynamic pricing of Stackelberg game and operation strategy optimization," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    3. Skalyga, Mikhail & Wu, Qiuwei & Zhang, Menglin, 2021. "Uncertainty-fully-aware coordinated dispatch of integrated electricity and heat system," Energy, Elsevier, vol. 224(C).
    4. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    5. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    6. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    7. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    8. Chen, Jing & Li, Fan & Li, Haoran & Sun, Bo & Zhang, Chenghui & Liu, Shuai, 2023. "Novel dynamic equivalent circuit model of integrated energy systems," Energy, Elsevier, vol. 262(PA).
    9. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Yang, Dongfeng & Xu, Yang & Liu, Xiaojun & Jiang, Chao & Nie, Fanjie & Ran, Zixu, 2022. "Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture Technologies," Energy, Elsevier, vol. 253(C).
    11. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    12. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    13. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    14. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    15. Frölke, Linde & Sousa, Tiago & Pinson, Pierre, 2022. "A network-aware market mechanism for decentralized district heating systems," Applied Energy, Elsevier, vol. 306(PA).
    16. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    17. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Huang, Chang & Hu, Eric & Yu, Gang & Zhang, Yumeng & Zhang, Nan, 2021. "Simulation study on a novel solar aided combined heat and power system for heat-power decoupling," Energy, Elsevier, vol. 220(C).
    19. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    20. Zhu, Mengshu & Li, Jinghua, 2022. "Integrated dispatch for combined heat and power with thermal energy storage considering heat transfer delay," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920308692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.