My bibliography
Save this item
Daily tourism volume forecasting for tourist attractions
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
- Kaijian He & Don Wu & Yingchao Zou, 2022. "Tourist Arrival Forecasting Using Multiscale Mode Learning Model," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
- Jorge V Pérez-RodrÃguez & Juan M Hernández & Julián Andrada-Félix, 2024. "Modelling prices and volatilities in the sharing economy," Tourism Economics, , vol. 30(5), pages 1189-1215, August.
- Pingping Cao & Jin Zheng & Mingyang Li & Yu Fu, 2023. "A Model for the Assignment of Emergency Rescuers Considering Collaborative Information," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
- Guan, Bo & Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed, 2022. "Forecasting tourism growth with State-Dependent Models," Annals of Tourism Research, Elsevier, vol. 94(C).
- Ziqi Yuan & Guozhu Jia, 2022. "Systematic investigation of keywords selection and processing strategy on search engine forecasting: a case of tourist volume in Beijing," Information Technology & Tourism, Springer, vol. 24(4), pages 547-580, December.
- Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
- Nicolau, Juan Luis & Kim, Hyoeun & Liu, Xianwei, 2021. "The search value model: Detecting abnormal searching behavior," Annals of Tourism Research, Elsevier, vol. 87(C).
- Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
- Zhenjie Liao & Lijuan Zhang, 2021. "Spatial distribution evolution and accessibility of A-level scenic spots in Guangdong Province from the perspective of quantitative geography," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-18, November.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Jianxin Zhang & Yuting Yan & Jinyue Zhang & Peixue Liu & Li Ma, 2023. "Investigating the Spatial-Temporal Variation of Pre-Trip Searching in an Urban Agglomeration," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
- Dong Zhang & Pengkun Wu & Chong Wu & Eric W. T. Ngai, 2024. "Forecasting duty-free shopping demand with multisource data: a deep learning approach," Annals of Operations Research, Springer, vol. 339(1), pages 861-887, August.
- Yuhong Yang & Tarik Dogru & Chao Liang & Jianqiong Wang & Pengfei Xu, 2024. "Developing and testing the efficacy of a novel forecasting methodology: Theory and evidence from China," Tourism Economics, , vol. 30(8), pages 2043-2069, December.
- Yan Zhang & Jiekuan Zhang, 2023. "Tourist Attractions and Economic Growth in China: A Difference-in-Differences Analysis," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
- Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
- Jian-Wu Bi & Tian-Yu Han & Yanbo Yao & Hui Li, 2022. "Ranking hotels through multi-dimensional hotel information: a method considering travelers’ preferences and expectations," Information Technology & Tourism, Springer, vol. 24(1), pages 127-155, March.
- Arpan Kumar Kar & Sunil Kumar & P. Vigneswara Ilavarasan, 2021. "Modelling the Service Experience Encounters Using User-Generated Content: A Text Mining Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(4), pages 267-288, December.
- Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
- Thao Nguyen-Da & Yi-Min Li & Chi-Lu Peng & Ming-Yuan Cho & Phuong Nguyen-Thanh, 2023. "Tourism Demand Prediction after COVID-19 with Deep Learning Hybrid CNN–LSTM—Case Study of Vietnam and Provinces," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
- He, Ling-Yang & Li, Hui & Bi, Jian-Wu & Yang, Jing-Jing & Zhou, Qing, 2022. "The impact of public health emergencies on hotel demand - Estimation from a new foresight perspective on the COVID-19," Annals of Tourism Research, Elsevier, vol. 94(C).
- Sergei Mikhailov & Alexey Kashevnik, 2020. "Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study," Future Internet, MDPI, vol. 12(10), pages 1-16, September.
- Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.
- Chuan Zhang & Ao‐Yun Hu & Yu‐Xin Tian, 2023. "Daily tourism forecasting through a novel method based on principal component analysis, grey wolf optimizer, and extreme learning machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2121-2138, December.
- Li, Hengyun & Gao, Huicai & Song, Haiyan, 2023. "Tourism forecasting with granular sentiment analysis," Annals of Tourism Research, Elsevier, vol. 103(C).
- Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
- Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing tourism demand forecasting with a transformer-based framework," Annals of Tourism Research, Elsevier, vol. 107(C).