IDEAS home Printed from https://ideas.repec.org/a/spr/infott/v24y2022i4d10.1007_s40558-022-00238-5.html
   My bibliography  Save this article

Systematic investigation of keywords selection and processing strategy on search engine forecasting: a case of tourist volume in Beijing

Author

Listed:
  • Ziqi Yuan

    (Sichuan Normal University)

  • Guozhu Jia

    (Sichuan Normal University)

Abstract

The timeliness, precision, and low cost of search data have great potential for projecting tourist volume. Obtaining valuable information for decision-making, particularly for predicting, is hampered by the vast amount of search data. A systematic investigation of keyword selection and processing has been conducted. Using Beijing tourist volume as an example, 11 different feature extraction algorithms were selected and combined with long short-term memory (LSTM), random forest (RF) and fuzzy time series (FTS) for forecasting tourist volume. A total of 1612 keywords were retrieved from Baidu Index demand mapping using the direct word extraction method, range word extraction method and empirical selection method. The remaining 813 keywords were subjected to feature extraction. Based on the forecasting results of medium and short-term (1-day, 7-days and 10-days), the forecasting results of Kernel principal component analysis (KPCA) and locally linear embedding (LLE) are relatively stable when the dimensionality is reduced to 5 dimensions. The forecasting results of t-stochastic neighbor embedding (t-SNE), isometric mapping (IsoMap) and locally linear embedding (LLE), locality preserving projections (LPP), independent component correlation (ICA) are relatively stable when the dimensionality is reduced to 10 dimensions. Accurately forecasting many factors (transportation, attraction, food, lodging, travel, tips, tickets, and weather) provides a solid foundation for tourism demand optimization and scientific management and a resource for tourists' holistic vacation planning.

Suggested Citation

  • Ziqi Yuan & Guozhu Jia, 2022. "Systematic investigation of keywords selection and processing strategy on search engine forecasting: a case of tourist volume in Beijing," Information Technology & Tourism, Springer, vol. 24(4), pages 547-580, December.
  • Handle: RePEc:spr:infott:v:24:y:2022:i:4:d:10.1007_s40558-022-00238-5
    DOI: 10.1007/s40558-022-00238-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40558-022-00238-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40558-022-00238-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
    2. Huang, Xiankai & Zhang, Lifeng & Ding, Yusi, 2017. "The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City," Tourism Management, Elsevier, vol. 58(C), pages 301-306.
    3. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
    4. Han, Yongming & Liu, Shuang & Cong, Di & Geng, Zhiqiang & Fan, Jinzhen & Gao, Jingyang & Pan, Tingrui, 2021. "Resource optimization model using novel extreme learning machine with t-distributed stochastic neighbor embedding: Application to complex industrial processes," Energy, Elsevier, vol. 225(C).
    5. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    6. Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
    7. Cui, Jialin & Shen, Bo-Wen, 2021. "A kernel principal component analysis of coexisting attractors within a generalized Lorenz model," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    9. Serhan Cevik, 2022. "Where should we go? Internet searches and tourist arrivals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
    10. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    11. Lu, Wei & Liu, Zhifeng & Huang, Yong & Bu, Yi & Li, Xin & Cheng, Qikai, 2020. "How do authors select keywords? A preliminary study of author keyword selection behavior," Journal of Informetrics, Elsevier, vol. 14(4).
    12. Cuomo, Maria Teresa & Tortora, Debora & Foroudi, Pantea & Giordano, Alex & Festa, Giuseppe & Metallo, Gerardino, 2021. "Digital transformation and tourist experience co-design: Big social data for planning cultural tourism," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    2. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
    3. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    4. Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
    5. Chuan Zhang & Ao‐Yun Hu & Yu‐Xin Tian, 2023. "Daily tourism forecasting through a novel method based on principal component analysis, grey wolf optimizer, and extreme learning machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2121-2138, December.
    6. Li, Cheng & Ge, Peng & Liu, Zhusheng & Zheng, Weimin, 2020. "Forecasting tourist arrivals using denoising and potential factors," Annals of Tourism Research, Elsevier, vol. 83(C).
    7. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    8. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    9. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    10. Binru Zhang & Yulian Pu & Yuanyuan Wang & Jueyou Li, 2019. "Forecasting Hotel Accommodation Demand Based on LSTM Model Incorporating Internet Search Index," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    11. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    12. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    13. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
    14. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    15. Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
    16. Haodong Sun & Yang Yang & Yanyan Chen & Xiaoming Liu & Jiachen Wang, 2023. "Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model," Information Technology & Tourism, Springer, vol. 25(2), pages 205-233, June.
    17. Sergei Mikhailov & Alexey Kashevnik, 2020. "Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study," Future Internet, MDPI, vol. 12(10), pages 1-16, September.
    18. Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
    19. Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
    20. Katerina Volchek & Anyu Liu & Haiyan Song & Dimitrios Buhalis, 2019. "Forecasting tourist arrivals at attractions: Search engine empowered methodologies," Tourism Economics, , vol. 25(3), pages 425-447, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infott:v:24:y:2022:i:4:d:10.1007_s40558-022-00238-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.