Investigating the Spatial-Temporal Variation of Pre-Trip Searching in an Urban Agglomeration
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
- Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
- Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
- Rebeka-Anna Pop & Zsuzsa Săplăcan & Dan-Cristian Dabija & Mónika-Anetta Alt, 2022. "The impact of social media influencers on travel decisions: the role of trust in consumer decision journey," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(5), pages 823-843, March.
- Kanchana Wickramasinghe & Shyama Ratnasiri, 2021. "The role of disaggregated search data in improving tourism forecasts: Evidence from Sri Lanka," Current Issues in Tourism, Taylor & Francis Journals, vol. 24(19), pages 2740-2754, October.
- Yang, Yang & Zhang, Honglei, 2019. "Spatial-temporal forecasting of tourism demand," Annals of Tourism Research, Elsevier, vol. 75(C), pages 106-119.
- Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
- Shenghong Wang & Yunyun Yu & Jiaqi Chen & Jun Liu, 2023. "Impact of climate change on cherry blossom viewing tourism: analysis and simulation based on Weibo proxy data," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(5), pages 718-734, March.
- Kati Nilbe & Rein Ahas & Siiri Silm, 2014. "Evaluating the Travel Distances of Events Visitors and Regular Visitors Using Mobile Positioning Data: The Case of Estonia," Journal of Urban Technology, Taylor & Francis Journals, vol. 21(2), pages 91-107, April.
- Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2018. "Modelling tourist flow association for tourism demand forecasting," Current Issues in Tourism, Taylor & Francis Journals, vol. 21(8), pages 902-916, May.
- Maximo Camacho & Matías José Pacce, 2018. "Forecasting travellers in Spain with Google’s search volume indices," Tourism Economics, , vol. 24(4), pages 434-448, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.
- Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
- Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
- Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
- Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
- Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
- Edmond H. C. Wu & Jihao Hu & Rui Chen, 2022. "Monitoring and forecasting COVID-19 impacts on hotel occupancy rates with daily visitor arrivals and search queries," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(3), pages 490-507, February.
- Ilsé Botha & Andrea Saayman, 2024. "Does Google Analytics Improve the Prediction of Tourism Demand Recovery?," Forecasting, MDPI, vol. 6(4), pages 1-17, October.
- Sergei Mikhailov & Alexey Kashevnik, 2020. "Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study," Future Internet, MDPI, vol. 12(10), pages 1-16, September.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Chuan Zhang & Ao‐Yun Hu & Yu‐Xin Tian, 2023. "Daily tourism forecasting through a novel method based on principal component analysis, grey wolf optimizer, and extreme learning machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2121-2138, December.
- Ziqi Yuan & Guozhu Jia, 2022. "Systematic investigation of keywords selection and processing strategy on search engine forecasting: a case of tourist volume in Beijing," Information Technology & Tourism, Springer, vol. 24(4), pages 547-580, December.
- Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
- Li, Hengyun & Gao, Huicai & Song, Haiyan, 2023. "Tourism forecasting with granular sentiment analysis," Annals of Tourism Research, Elsevier, vol. 103(C).
- Getz, Donald & Page, Stephen J., 2016. "Progress and prospects for event tourism research," Tourism Management, Elsevier, vol. 52(C), pages 593-631.
- Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
- Praveen Ranjan Srivastava & Prajwal Eachempati & Ajay Kumar & Ashish Kumar Jha & Lalitha Dhamotharan, 2023. "Best strategy to win a match: an analytical approach using hybrid machine learning-clustering-association rule framework," Annals of Operations Research, Springer, vol. 325(1), pages 319-361, June.
- Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Radu Lixăndroiu, 2017. "E-Commerce Trend Forecasting For Romania Vs European Union," Journal of Smart Economic Growth, , vol. 2(1), pages 98-108, March.
More about this item
Keywords
tourism information search; search engine; mobile roaming data; tourism forecasting; Webometrics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11423-:d:1200574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.