IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/5ezn3_v1.html
   My bibliography  Save this paper

Enhancing Tourism Demand Forecasting with a Transformer-based Framework

Author

Listed:
  • Li, Xin
  • Xu, Yechi
  • Law, Rob
  • Wang, Shouyang

Abstract

This study introduces an innovative framework that harnesses the most recent transformer architecture to enhance tourism demand forecasting. The proposed transformer-based model integrates the tree-structured parzen estimator for hyperparameter optimization, a robust time series decomposition approach, and a temporal fusion transformer for multivariate time series prediction. Our novel approach initially employs the decomposition method to decompose the data series to effectively mitigate the influence of outliers. The temporal fusion transformer is subsequently utilized for forecasting, and its hyperparameters are meticulously fine-tuned by a Bayesian-based algorithm, culminating in a more efficient and precise model for tourism demand forecasting. Our model surpasses existing state-of-the-art methodologies in terms of forecasting accuracy and robustness.

Suggested Citation

  • Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing Tourism Demand Forecasting with a Transformer-based Framework," SocArXiv 5ezn3_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:5ezn3_v1
    DOI: 10.31219/osf.io/5ezn3_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6605043501fc9c01c4316e0b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/5ezn3_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:5ezn3_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.