Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network
Author
Abstract
Suggested Citation
DOI: 10.1002/for.3034
Download full text from publisher
References listed on IDEAS
- Lin, Tzu-Ping & Matzarakis, Andreas, 2011. "Tourism climate information based on human thermal perception in Taiwan and Eastern China," Tourism Management, Elsevier, vol. 32(3), pages 492-500.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
- Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
- Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
- Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
- Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1352-1362, August.
- Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
- Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 524-524, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
- Li, Cheng & Zheng, Weimin & Ge, Peng, 2022. "Tourism demand forecasting with spatiotemporal features," Annals of Tourism Research, Elsevier, vol. 94(C).
- Haodong Sun & Yang Yang & Yanyan Chen & Xiaoming Liu & Jiachen Wang, 2023. "Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model," Information Technology & Tourism, Springer, vol. 25(2), pages 205-233, June.
- Chuan Zhang & Ao‐Yun Hu & Yu‐Xin Tian, 2023. "Daily tourism forecasting through a novel method based on principal component analysis, grey wolf optimizer, and extreme learning machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2121-2138, December.
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
- Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
- Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
- Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Han Liu & Yongjing Wang & Haiyan Song & Ying Liu, 2023. "Measuring tourism demand nowcasting performance using a monotonicity test," Tourism Economics, , vol. 29(5), pages 1302-1327, August.
- Ziqi Yuan & Guozhu Jia, 2022. "Systematic investigation of keywords selection and processing strategy on search engine forecasting: a case of tourist volume in Beijing," Information Technology & Tourism, Springer, vol. 24(4), pages 547-580, December.
- Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
- Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
- Binru Zhang & Yulian Pu & Yuanyuan Wang & Jueyou Li, 2019. "Forecasting Hotel Accommodation Demand Based on LSTM Model Incorporating Internet Search Index," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
- Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
- Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
- Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:2:p:344-365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.