IDEAS home Printed from https://ideas.repec.org/r/bla/obuest/v67y2005is1p785-813.html
   My bibliography  Save this item

Leading Indicators for Euro‐area Inflation and GDP Growth

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Serati, Massimiliano & Manera, Matteo & Plotegher, Michele, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," International Energy Markets Working Papers 44426, Fondazione Eni Enrico Mattei (FEEM).
  2. Carlo A. Favero & Massimiliano Marcellino, 2005. "Modelling and Forecasting Fiscal Variables for the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 755-783, December.
  3. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  4. Lamprou, Dimitra, 2016. "Nowcasting GDP in Greece: The impact of data revisions and forecast origin on model selection and performance," The Journal of Economic Asymmetries, Elsevier, vol. 14(PA), pages 93-102.
  5. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
  6. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
  7. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
  8. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  9. Poghosyan, K., 2012. "Structural and reduced-form modeling and forecasting with application to Armenia," Other publications TiSEM ad1a24c3-15e6-4f04-b338-3, Tilburg University, School of Economics and Management.
  10. Scharnagl, Michael & Schumacher, Christian, 2007. "Reconsidering the role of monetary indicators for euro area inflation from a Bayesian perspective using group inclusion probabilities," Discussion Paper Series 1: Economic Studies 2007,09, Deutsche Bundesbank.
  11. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
  12. Albacete, Rebeca, 2005. "Forecasting inflation in the euro area using monthly time series models and quarterly econometric models," DES - Working Papers. Statistics and Econometrics. WS ws050401, Universidad Carlos III de Madrid. Departamento de Estadística.
  13. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  14. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  15. Anindya Banerjee & Victor Bystrov & Paul Mizen, 2010. "Interest rate pass-through in the major European economies - the role of expectations," Discussion Papers 10-07, Department of Economics, University of Birmingham.
  16. Heather Anderson & Mardi Dungey & Denise Osborn & Farshid Vahid, 2007. "Constructing Historical Euro Area Data," Money Macro and Finance (MMF) Research Group Conference 2006 99, Money Macro and Finance Research Group.
  17. Parma Chakravartti & Sudipto Mundle, 2017. "An Automatic Leading Indicator Based Growth Forecast For 2016-17 and The Outlook Beyond," Working Papers id:11773, eSocialSciences.
  18. Zivile Zekaite & Gabe de Bondt & Elke Hahn, 2017. "Alice: A New Inflation Monitoring Tool," EcoMod2017 10414, EcoMod.
  19. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic factor models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 27-42, March.
  20. Christopher L. Gilbert & Duo Qin, 2007. "Representation in Econometrics: A Historical Perspective," Working Papers 583, Queen Mary University of London, School of Economics and Finance.
  21. Kouwenberg, Roy & Zwinkels, Remco, 2014. "Forecasting the US housing market," International Journal of Forecasting, Elsevier, vol. 30(3), pages 415-425.
  22. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
  23. Burcu Gurcihan Yunculer & Gonul Sengul & Arzu Yavuz, 2014. "A Quest for Leading Indicators of the Turkish Unemployment Rate," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 14(1), pages 23-45.
  24. El-Shagi, Makram, 2011. "Inflation expectations: Does the market beat econometric forecasts?," The North American Journal of Economics and Finance, Elsevier, vol. 22(3), pages 298-319.
  25. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
  26. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
  27. Rudrani Bhattacharya & Parma Chakravartti & Sudipto Mundle, 2019. "Forecasting India’s economic growth: a time-varying parameter regression approach," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 12(3), pages 205-228, September.
  28. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  29. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
  30. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
  31. Angela Abbate & Sandra Eickmeier & Wolfgang Lemke & Massimiliano Marcellino, 2016. "The Changing International Transmission of Financial Shocks: Evidence from a Classical Time‐Varying FAVAR," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(4), pages 573-601, June.
  32. Dovern, Jonas, 2006. "Predicting GDP components: do leading indicators increase predictability?," Kiel Advanced Studies Working Papers 436, Kiel Institute for the World Economy (IfW Kiel).
  33. Matteo Ciccarelli & Benoît Mojon, 2010. "Global Inflation," The Review of Economics and Statistics, MIT Press, vol. 92(3), pages 524-535, August.
  34. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
  35. Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland Institute for Emerging Economies (BOFIT).
  36. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
  37. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
  38. Diron, Marie & Mojon, Benoît, 2005. "Forecasting the central bank's inflation objective is a good rule of thumb," Working Paper Series 564, European Central Bank.
  39. Vagenas, George & Vlachokyriakou, Eleni, 2012. "Olympic medals and demo-economic factors: Novel predictors, the ex-host effect, the exact role of team size, and the “population-GDP” model revisited," Sport Management Review, Elsevier, vol. 15(2), pages 211-217.
  40. Andrade, Philippe & Fourel, Valère & Ghysels, Eric & Idier, Julien, 2014. "The financial content of inflation risks in the euro area," International Journal of Forecasting, Elsevier, vol. 30(3), pages 648-659.
  41. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
  42. Christopher L. Gilbert & Duo Qin, 2007. "Representation in Econometrics: A Historical Perspective," Working Papers 583, Queen Mary University of London, School of Economics and Finance.
  43. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
  44. Qin, Duo & Cagas, Marie Anne & Ducanes, Geoffrey & Magtibay-Ramos, Nedelyn & Quising, Pilipinas, 2008. "Automatic leading indicators versus macroeconometric structural models: A comparison of inflation and GDP growth forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 399-413.
  45. Massimiliano Serati & Gianni Amisano, 2008. "Building composite leading indexes in a dynamic factor model framework: a new proposal," LIUC Papers in Economics 212, Cattaneo University (LIUC).
  46. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
  47. Oliver Hülsewig & Johannes Mayr & Timo Wollmershäuser, 2008. "Forecasting Euro Area Real GDP: Optimal Pooling of Information," CESifo Working Paper Series 2371, CESifo.
  48. Sarah Gelper & Christophe Croux, 2010. "On the Construction of the European Economic Sentiment Indicator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 47-62, February.
  49. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
  50. Anindya Banerjee & Bill Russell, 2006. "A markup model for forecasting inflation for the euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 495-511.
  51. Fichtner, Ferdinand & Rüffer, Rasmus & Schnatz, Bernd, 2009. "Leading indicators in a globalised world," Working Paper Series 1125, European Central Bank.
  52. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 2008 - 2015 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
  53. Capistran, Carlos, 2006. "On comparing multi-horizon forecasts," Economics Letters, Elsevier, vol. 93(2), pages 176-181, November.
  54. Panopoulou, Ekaterini, 2009. "Financial variables and euro area growth: A non-parametric causality analysis," Economic Modelling, Elsevier, vol. 26(6), pages 1414-1419, November.
  55. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
  56. Poza, Carlos & Monge, Manuel, 2020. "A real time leading economic indicator based on text mining for the Spanish economy. Fractional cointegration VAR and Continuous Wavelet Transform analysis," International Economics, Elsevier, vol. 163(C), pages 163-175.
  57. Giuseppe Munda, 2012. "Beyond GDP: Methodological and measurement issues in redefining “wealth”," UHE Working papers 2012_09, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
  58. Eickmeier, Sandra & Breitung, Jörg, 2005. "How synchronized are central and east European economies with the euro area? Evidence from a structural factor model," Discussion Paper Series 1: Economic Studies 2005,20, Deutsche Bundesbank.
  59. Daniel Grenouilleau, 2004. "A sorted leading indicators dynamic (SLID) factor model for short-run euro-area GDP forecasting," European Economy - Economic Papers 2008 - 2015 219, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
  60. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
  61. In Choi & Hanbat Jeong, 2019. "Model selection for factor analysis: Some new criteria and performance comparisons," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 577-596, July.
  62. Raffaele Mattera & Michelangelo Misuraca & Maria Spano & Germana Scepi, 2023. "Mixed frequency composite indicators for measuring public sentiment in the EU," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2357-2382, June.
  63. Travaglini, Guido, 2014. "Testing the hockey-stick hypothesis by statistical analyses of a large dataset of proxy records," MPRA Paper 55835, University Library of Munich, Germany.
  64. Barbara Roffia & Andrea Zaghini, 2007. "Excess Money Growth and Inflation Dynamics," International Finance, Wiley Blackwell, vol. 10(3), pages 241-280, December.
  65. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
  66. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
  67. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
  68. Oliver Hülsewig & Johannes Mayr & Stéphane Sorbe, 2007. "Assessing the Forecast Properties of the CESifo World Economic Climate Indicator: Evidence for the Euro Area," ifo Working Paper Series 46, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  69. Giuseppe Munda, 2015. "Beyond Gdp: An Overview Of Measurement Issues In Redefining ‘Wealth’," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 403-422, July.
  70. Ard Reijer & Peter Vlaar, 2006. "Forecasting Inflation: An Art as Well as a Science!," De Economist, Springer, vol. 154(1), pages 19-40, March.
  71. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
  72. El-Shagi, Makram, 2009. "Inflation Expectations: Does the Market Beat Professional Forecasts?," IWH Discussion Papers 16/2009, Halle Institute for Economic Research (IWH).
  73. Panopoulou, Ekaterini, 2007. "Predictive financial models of the euro area: A new evaluation test," International Journal of Forecasting, Elsevier, vol. 23(4), pages 695-705.
  74. Jun Wen & Samia Khalid & Hamid Mahmood & Xiuyun Yang, 2022. "Economic policy uncertainty and growth nexus in Pakistan: a new evidence using NARDL model," Economic Change and Restructuring, Springer, vol. 55(3), pages 1701-1715, August.
  75. Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
  76. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  77. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
  78. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
  79. repec:zbw:bofitp:2017_019 is not listed on IDEAS
  80. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
  81. Marco Rubilar-González & Gabriel Pino, 2018. "Are Euro-Area expectations about recession phases effective to anticipate consequences of economic crises?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 9(2), pages 141-161, June.
  82. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
  83. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2007. "Automatic Leading Indicators (ALIs) versus Macro Econometric Structural Models (MESMs): Comparison of Inflation and GDP growth Forecasting," EcoMod2007 23900072, EcoMod.
  84. In Choi, 2011. "Efficient Estimation of Nonstationary Factor Models," Working Papers 1101, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Jun 2011.
  85. Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland, Institute for Economies in Transition.
  86. de Bondt, Gabe J. & Hahn, Elke & Zekaite, Zivile, 2021. "ALICE: Composite leading indicators for euro area inflation cycles," International Journal of Forecasting, Elsevier, vol. 37(2), pages 687-707.
  87. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
  88. Travaglini, Guido, 2011. "Climate change: where is the hockey stick? evidence from millennial-scale reconstructed and updated temperature time series," MPRA Paper 35565, University Library of Munich, Germany.
  89. Mehdi Seraj & Pejman Bahramian & Abdulkareem Alhassan & Rasool Dehghanzadeh Shahabad, 2020. "The validity of Rodrik’s conclusion on real exchange rate and economic growth: factor priority evidence from feature selection approach," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-6, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.