IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v93y2006i2p176-181.html
   My bibliography  Save this article

On comparing multi-horizon forecasts

Author

Listed:
  • Capistran, Carlos

Abstract

No abstract is available for this item.

Suggested Citation

  • Capistran, Carlos, 2006. "On comparing multi-horizon forecasts," Economics Letters, Elsevier, vol. 93(2), pages 176-181, November.
  • Handle: RePEc:eee:ecolet:v:93:y:2006:i:2:p:176-181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(06)00148-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    2. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
    2. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    3. Andrew Martinez, 2017. "Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter," Working Papers (Old Series) 1717, Federal Reserve Bank of Cleveland.
    4. Capistrán Carlos & Constandse Christian & Ramos Francia Manuel, 2009. "Using Seasonal Models to Forecast Short-Run Inflation in Mexico," Working Papers 2009-05, Banco de México.
    5. Espasa, Antoni & Mayo-Burgos, Iván, 2013. "Forecasting aggregates and disaggregates with common features," International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
    6. Capistrán Carlos, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
    2. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    3. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    4. Norman Swanson & Nii Ayi Armah, 2006. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 200619, Rutgers University, Department of Economics.
    5. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    6. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    7. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    8. Hilde Bjørnland & Leif Brubakk & Anne Jore, 2008. "Forecasting inflation with an uncertain output gap," Empirical Economics, Springer, vol. 35(3), pages 413-436, November.
    9. Calhoun, Gray, 2014. "Out-Of-Sample Comparisons of Overfit Models," Staff General Research Papers Archive 32462, Iowa State University, Department of Economics.
    10. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    11. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    12. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    13. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    14. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    15. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "What Helps Forecast U.S. Inflation?—Mind the Gap!," Koç University-TUSIAD Economic Research Forum Working Papers 1615, Koc University-TUSIAD Economic Research Forum.
    16. Hyeongwoo Kim, 2018. "Fiscal Policy, Wages, and Jobs in the U.S," Auburn Economics Working Paper Series auwp2018-02, Department of Economics, Auburn University.
    17. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    18. Marc Burri & Daniel Kaufmann, 2020. "A daily fever curve for the Swiss economy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    19. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    20. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:93:y:2006:i:2:p:176-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.