IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20091125.html
   My bibliography  Save this paper

Leading indicators in a globalised world

Author

Listed:
  • Fichtner, Ferdinand
  • Rüffer, Rasmus
  • Schnatz, Bernd

Abstract

Using OECD composite leading indicators (CLI), we assess empirically whether the ability of the country- specific CLIs to predict economic activity has diminished in recent years, e.g. due to rapid advances in globalisation. Overall, we find evidence that the CLI encompasses useful information for forecasting industrial production, particularly over horizons of four to eight months ahead. The evidence is particularly strong when taking cointegration relationships into account. At the same time, we find indications that the forecast accuracy has declined over time for several countries. Augmenting the country-specific CLI with a leading indicator of the external environment and employing forecast combination techniques improves the forecast performance for several economies. Over time, the increasing importance of international dependencies is documented by relative performance gains of the extended model for selected countries. JEL Classification: C53, E32, E37, F47

Suggested Citation

  • Fichtner, Ferdinand & Rüffer, Rasmus & Schnatz, Bernd, 2009. "Leading indicators in a globalised world," Working Paper Series 1125, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20091125
    Note: 383006
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1125.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    2. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    3. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    4. Clements, M.P. & Hendry, D.F., 1992. "Forecasting in Cointegrated Systems," Economics Series Working Papers 99139, University of Oxford, Department of Economics.
    5. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, December.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
    8. Dr Martin Weale & Gonzalo Camba-Mendez & George Kapetanios & Ray Smith, 1999. "The Forecasting Performance of the OECD Composite Leading Indicators for France, Germany, Italy," National Institute of Economic and Social Research (NIESR) Discussion Papers 155, National Institute of Economic and Social Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shirly Siew-Ling Wong & Toh-Hao Tan & Shazali Abu Mansor & Venus Khim-Sen Liew, 2018. "Rethinking and Moving Beyond GDP: A New Measure of Sarawak Economy Panorama," International Business Research, Canadian Center of Science and Education, vol. 11(12), pages 127-133, December.
    2. Jahn, Nadya & Kick, Thomas, 2012. "Early warning indicators for the German banking system: A macroprudential analysis," Discussion Papers 27/2012, Deutsche Bundesbank.
    3. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
    4. Agne Reklaite, 2015. "Globalisation Effect Measure Via Hierarchical Dynamic Factor Modelling," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 10(3), pages 139-149, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    2. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    3. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    4. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    5. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
    6. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    7. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    8. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
    9. Tom Engsted & Niels Haldrup & Boriss Siliverstovs, 2004. "Long-run forecasting in multicointegrated systems," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 315-335.
    10. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    11. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    12. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    13. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    14. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    15. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    16. Jun Wen & Samia Khalid & Hamid Mahmood & Xiuyun Yang, 2022. "Economic policy uncertainty and growth nexus in Pakistan: a new evidence using NARDL model," Economic Change and Restructuring, Springer, vol. 55(3), pages 1701-1715, August.
    17. Melisso Boschi & Alessandro Girardi, 2007. "Euro area inflation: long-run determinants and short-run dynamics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(1), pages 9-24.
    18. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    19. Capistran, Carlos, 2006. "On comparing multi-horizon forecasts," Economics Letters, Elsevier, vol. 93(2), pages 176-181, November.
    20. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.

    More about this item

    Keywords

    business cycle; forecast comparison; globalisation; Leading Indicator; structural change;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20091125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.