IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/55835.html
   My bibliography  Save this paper

Testing the hockey-stick hypothesis by statistical analyses of a large dataset of proxy records

Author

Listed:
  • Travaglini, Guido

Abstract

This paper is a statistical time-series investigation addressed at testing the anthropogenic climate change hypothesis known as the “hockey-stick”. The time-series components of a select batch of 258 long-term yearly Climate Change Proxies (CCP) included in 19 paleoclimate datasets, all of which running back as far as the year 2192 B.C., are reconstructed by means of univariate Bayesian Calibration. The instrumental temperature record utilized is the Global Best Estimated Anomaly (BEA) of the HADCRUT4 time series readings available yearly for the period 1850-2010. After performing appropriate data transformations, Ordinary Least Squares parameter estimates are obtained, and subsequently simulated by means of multi-draw Gibbs sampling for each year of the pre-1850 period. The ensuing Time-Varying Parameter sequence is utilized to produce high-resolution calibrated estimates of the CCP series, merged with BEA to yield Millennial-scale Time Series (MTS). Finally, the MTS are individually tested for temperature single break date and multiple peak dates. As a result, the estimated temperature breaks and peaks suggest widespread rejection of the hockey-stick hypothesis since they are mostly centered in the Medieval Warm Period.

Suggested Citation

  • Travaglini, Guido, 2014. "Testing the hockey-stick hypothesis by statistical analyses of a large dataset of proxy records," MPRA Paper 55835, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:55835
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/55835/1/prp-2-36-2014.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen McIntyre & Ross McKitrick, 2005. "The M&M Critique of the MBH98 Northern Hemisphere Climate Index: Update and Implications," Energy & Environment, , vol. 16(1), pages 69-100, January.
    2. Cooley, Thomas F, 1997. "Calibrated Models," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 13(3), pages 55-69, Autumn.
    3. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    4. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    5. Michael E. Mann & Raymond S. Bradley & Malcolm K. Hughes, 1998. "Global-scale temperature patterns and climate forcing over the past six centuries," Nature, Nature, vol. 392(6678), pages 779-787, April.
    6. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    7. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    8. Perron, Pierre & Zhu, Xiaokang, 2005. "Structural breaks with deterministic and stochastic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 65-119.
    9. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    10. Kim, Dukpa & Perron, Pierre, 2009. "Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses," Journal of Econometrics, Elsevier, vol. 148(1), pages 1-13, January.
    11. Bruno Sansó & Chris Forest, 2009. "Statistical calibration of climate system properties," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 485-503, September.
    12. Anders Moberg & Dmitry M. Sonechkin & Karin Holmgren & Nina M. Datsenko & Wibjörn Karlén, 2005. "Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data," Nature, Nature, vol. 433(7026), pages 613-617, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Travaglini, Guido, 2011. "Climate change: where is the hockey stick? evidence from millennial-scale reconstructed and updated temperature time series," MPRA Paper 35565, University Library of Munich, Germany.
    2. Vicente Esteve & Manuel Navarro-Ibáñez & María A. Prats, 2013. "The present value model of US stock prices revisited: long-run evidence with structural breaks, 1871-2010," Working Papers 04/13, Instituto Universitario de Análisis Económico y Social.
    3. Mohitosh Kejriwal & Claude Lopez, 2013. "Unit Roots, Level Shifts, and Trend Breaks in Per Capita Output: A Robust Evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 892-927, November.
    4. Hoang, Nam & Grieb, Terrance, 2018. "Hedging Positions, Basis, and Futures Risk Premium: A Disaggregated Data Analysis on US Wheat Markets," 2018 Annual Meeting, August 5-7, Washington, D.C. 273799, Agricultural and Applied Economics Association.
    5. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2012. "Unit root testing under a local break in trend," Journal of Econometrics, Elsevier, vol. 167(1), pages 140-167.
    6. Terrance Grieb & Nam Hoang, 2019. "The Effects of Hedging and Speculation on Cash-Futures Basis: Results from U.S. Wheat Markets," Review of Economics & Finance, Better Advances Press, Canada, vol. 17, pages 1-15, August.
    7. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    8. Cavaliere, Giuseppe & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2011. "Testing For Unit Roots In The Presence Of A Possible Break In Trend And Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 27(5), pages 957-991, October.
    9. Terence Mills, 2013. "Breaks and unit roots in global and hemispheric temperatures: an updated analysis," Climatic Change, Springer, vol. 118(3), pages 745-755, June.
    10. Sobreira, Nuno & Nunesz, Luis C. & Rodriguesz, Paulo M. M., 2012. "Neoclassical, semi-endogenous or endogenous growth theory? Evidence based on new structural change tests," Insper Working Papers wpe_291, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    11. Nuno Sobreira & Luis C. Nunes & Paulo M. M. Rodrigues, 2014. "Characterizing Economic Growth Paths Based On New Structural Change Tests," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 845-861, April.
    12. Pierre Perron & Eduardo Zorita & Francisco Estrada & Pierre Perron, 2017. "Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 711-732, September.
    13. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    14. Harris, David & Kew, Hsein & Taylor, A.M. Robert, 2020. "Level shift estimation in the presence of non-stationary volatility with an application to the unit root testing problem," Journal of Econometrics, Elsevier, vol. 219(2), pages 354-388.
    15. Ghoshray, Atanu & Kejriwal, Mohitosh & Wohar, Mark E., 2011. "Breaking Trends and the Prebisch-Singer Hypothesis: A Further Investigation," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 120387, European Association of Agricultural Economists.
    16. Luis Emilio Morales & Nam Hoang & Eric Stuen, 2017. "Spatial price premium transmission for Meat Standards Australia-graded cattle: the vulnerability of price premiums to outside shocks," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 590-609, October.
    17. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Testing For A Unit Root In The Presence Of A Possible Break In Trend," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1545-1588, December.
    18. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    19. Travaglini, Guido, 2010. "Dynamic Econometric Testing of Climate Change and of its Causes," MPRA Paper 23600, University Library of Munich, Germany.
    20. R. Santos Alimi, 2014. "ARDL Bounds Testing Approach to Cointegration: A Re-Examination of Augmented Fisher Hypothesis in an Open Economy," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 2(2), pages 103-114, June.

    More about this item

    Keywords

    Bayesian Calibration; climate change; Gibbs sampling; hockey-stick hypothesis.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:55835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.