IDEAS home Printed from https://ideas.repec.org/r/bla/jorssb/v61y1999i2p413-438.html
   My bibliography  Save this item

Semiparametric methods for response‐selective and missing data problems in regression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Constantine E. Frangakis & Stuart G. Baker, 2001. "Compliance Subsampling Designs for Comparative Research: Estimation and Optimal Planning," Biometrics, The International Biometric Society, vol. 57(3), pages 899-908, September.
  2. James Y. Dai & Michael LeBlanc & Charles Kooperberg, 2009. "Semiparametric Estimation Exploiting Covariate Independence in Two-Phase Randomized Trials," Biometrics, The International Biometric Society, vol. 65(1), pages 178-187, March.
  3. Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
  4. Irit Aitkin, "undated". "The effect of missing data on covariates in survival analysis," Australasian Stata Users' Group Meetings 2004 6, Stata Users Group.
  5. Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
  6. Michelle Ross & Jon Wakefield, 2013. "Bayesian Inference for Two-Phase Studies with Categorical Covariates," Biometrics, The International Biometric Society, vol. 69(2), pages 469-477, June.
  7. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
  8. Donglin Zeng & Qingxia Chen, 2010. "Adjustment for Missingness Using Auxiliary Information in Semiparametric Regression," Biometrics, The International Biometric Society, vol. 66(1), pages 115-122, March.
  9. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
  10. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
  11. Leilei Zeng & Richard J. Cook & Theodore E. Warkentin, 2010. "Regression Analysis with a Misclassified Covariate from a Current Status Observation Scheme," Biometrics, The International Biometric Society, vol. 66(2), pages 415-425, June.
  12. Brady Ryan & Ananthika Nirmalkanna & Candemir Cigsar & Yildiz E. Yilmaz, 2023. "Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 510-539, July.
  13. J. F. Lawless, 2018. "Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 28-44, January.
  14. Xiaofei Wang & Haibo Zhou, 2006. "A Semiparametric Empirical Likelihood Method for Biased Sampling Schemes with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 62(4), pages 1149-1160, December.
  15. Jason P. Estes & Bhramar Mukherjee & Jeremy M. G. Taylor, 2018. "Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 568-586, December.
  16. S. Haneuse & J. Chen, 2011. "A Multiphase Design Strategy for Dealing with Participation Bias," Biometrics, The International Biometric Society, vol. 67(1), pages 309-318, March.
  17. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
  18. Takahiro Hoshino & Hiroshi Kurata & Kazuo Shigemasu, 2006. "A Propensity Score Adjustment for Multiple Group Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 691-712, December.
  19. Göran Kauermann & Mehboob Ali, 2021. "Semi-parametric regression when some (expensive) covariates are missing by design," Statistical Papers, Springer, vol. 62(4), pages 1675-1696, August.
  20. Wenguang Sun & Marshall M. Joffe & Jinbo Chen & Steven M. Brunelli, 2010. "Design and Analysis of Multiple Events Case–Control Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1220-1229, December.
  21. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
  22. Yang Zhao & Meng Liu, 2021. "Unified approach for regression models with nonmonotone missing at random data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 87-101, March.
  23. Haibo Zhou & Rui Song & Yuanshan Wu & Jing Qin, 2011. "Statistical Inference for a Two-Stage Outcome-Dependent Sampling Design with a Continuous Outcome," Biometrics, The International Biometric Society, vol. 67(1), pages 194-202, March.
  24. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
  25. Weiwei Wang & Daniel Scharfstein & Zhiqiang Tan & Ellen J. MacKenzie, 2009. "Causal inference in outcome‐dependent two‐phase sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 947-969, November.
  26. Takahiro Hoshino, 2007. "Doubly Robust-Type Estimation for Covariate Adjustment in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 535-549, December.
  27. Hitomi, Kohtaro & Nishiyama, Yoshihiko & Okui, Ryo, 2008. "A Puzzling Phenomenon In Semiparametric Estimation Problems With Infinite-Dimensional Nuisance Parameters," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1717-1728, December.
  28. Gustavo Amorim & Ran Tao & Sarah Lotspeich & Pamela A. Shaw & Thomas Lumley & Bryan E. Shepherd, 2021. "Two‐phase sampling designs for data validation in settings with covariate measurement error and continuous outcome," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1368-1389, October.
  29. Fatema Shafie Khorassani & Jeremy M. G. Taylor & Niko Kaciroti & Michael R. Elliott, 2023. "Incorporating Covariates into Measures of Surrogate Paradox Risk," Stats, MDPI, vol. 6(1), pages 1-23, February.
  30. Esmeralda A. Ramalho & Richard J. Smith, 2013. "Discrete Choice Non-Response," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(1), pages 343-364.
  31. Yang Zhao, 2021. "Semiparametric model for regression analysis with nonmonotone missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 461-475, June.
  32. Yuichi Hirose, 2011. "Efficiency of profile likelihood in semi-parametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1247-1275, December.
  33. Alastair Scott & Chris Wild, 2002. "On the robustness of weighted methods for fitting models to case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 207-219, May.
  34. Sebastien J.‐P. A. Haneuse & And Jonathan C. Wakefield, 2008. "The combination of ecological and case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 73-93, February.
  35. Xue Yuan & Wang Jinjuan & Ding Juan & Zhang Sanguo & Li Qizhai, 2019. "A powerful test for ordinal trait genetic association analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(2), pages 1-9, April.
  36. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
  37. Jixian Wang & Peter Donnan, 2002. "Adjusting for missing record linkage in outcome studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 873-884.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.