IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v58y2006i4p687-706.html
   My bibliography  Save this article

Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression

Author

Listed:
  • Zhiwei Zhang
  • Howard Rockette

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
  • Handle: RePEc:spr:aistmt:v:58:y:2006:i:4:p:687-706
    DOI: 10.1007/s10463-006-0047-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-006-0047-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-006-0047-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    2. Murphy, S. A. & van der Vaart, A. W., 2001. "Semiparametric Mixtures in Case-Control Studies," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 1-32, October.
    3. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response‐selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438, April.
    4. Chatterjee N. & Chen Y-H. & Breslow N.E., 2003. "A Pseudoscore Estimator for Regression Problems With Two-Phase Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 158-168, January.
    5. Hua Yun Chen, 2004. "Nonparametric and Semiparametric Models for Missing Covariates in Parametric Regression," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1176-1189, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhao, 2021. "Semiparametric model for regression analysis with nonmonotone missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 461-475, June.
    2. Samiran Sinha & Krishna K. Saha & Suojin Wang, 2014. "Semiparametric approach for non-monotone missing covariates in a parametric regression model," Biometrics, The International Biometric Society, vol. 70(2), pages 299-311, June.
    3. James Y. Dai & Michael LeBlanc & Charles Kooperberg, 2009. "Semiparametric Estimation Exploiting Covariate Independence in Two-Phase Randomized Trials," Biometrics, The International Biometric Society, vol. 65(1), pages 178-187, March.
    4. Yang Zhao & Meng Liu, 2021. "Unified approach for regression models with nonmonotone missing at random data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 87-101, March.
    5. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
    6. J. F. Lawless, 2018. "Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 28-44, January.
    7. Fatema Shafie Khorassani & Jeremy M. G. Taylor & Niko Kaciroti & Michael R. Elliott, 2023. "Incorporating Covariates into Measures of Surrogate Paradox Risk," Stats, MDPI, vol. 6(1), pages 1-23, February.
    8. S. Haneuse & J. Chen, 2011. "A Multiphase Design Strategy for Dealing with Participation Bias," Biometrics, The International Biometric Society, vol. 67(1), pages 309-318, March.
    9. Brady Ryan & Ananthika Nirmalkanna & Candemir Cigsar & Yildiz E. Yilmaz, 2023. "Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 510-539, July.
    10. Haibo Zhou & Rui Song & Yuanshan Wu & Jing Qin, 2011. "Statistical Inference for a Two-Stage Outcome-Dependent Sampling Design with a Continuous Outcome," Biometrics, The International Biometric Society, vol. 67(1), pages 194-202, March.
    11. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    12. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    13. Weiwei Wang & Daniel Scharfstein & Zhiqiang Tan & Ellen J. MacKenzie, 2009. "Causal inference in outcome‐dependent two‐phase sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 947-969, November.
    14. Lawrence C. McCandless & Sylvia Richardson & Nicky Best, 2012. "Adjustment for Missing Confounders Using External Validation Data and Propensity Scores," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 40-51, March.
    15. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    16. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    17. A. Adam Ding & Natalie DelRocco & Samuel S. Wu, 2024. "Statistical Methods for Selective Biomarker Testing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 693-722, December.
    18. Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
    19. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
    20. Yi Qian & Hui Xie, 2011. "No Customer Left Behind: A Distribution-Free Bayesian Approach to Accounting for Missing Xs in Marketing Models," Marketing Science, INFORMS, vol. 30(4), pages 717-736, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:58:y:2006:i:4:p:687-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.