IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v18y2019i2p9n2.html
   My bibliography  Save this article

A powerful test for ordinal trait genetic association analysis

Author

Listed:
  • Xue Yuan

    (School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China)

  • Wang Jinjuan

    (LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China)

  • Ding Juan

    (School of Mathematics and Statistics, Guangxi Normal University, Guilin, China)

  • Zhang Sanguo

    (School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China)

  • Li Qizhai

    (LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road, 55, Beijing 100190, China, Phone: +86-10-82541839)

Abstract

Response selective sampling design is commonly adopted in genetic epidemiologic study because it can substantially reduce time cost and increase power of identifying deleterious genetic variants predispose to human complex disease comparing with prospective design. The proportional odds model (POM) can be used to fit data obtained by this design. Unlike the logistic regression model, the estimated genetic effect based on POM by taking data as being enrolled prospectively is inconsistent. So the power of resulted Wald test is not satisfactory. The modified POM is suitable to fit this type of data, however, the corresponding Wald test is not optimal when the genetic effect is small. Here, we propose a new association test to handle this issue. Simulation studies show that the proposed test can control the type I error rate correctly and is more powerful than two existing methods. Finally, we applied three tests to Anticyclic Citrullinated Protein Antibody data from Genetic Workshop 16.

Suggested Citation

  • Xue Yuan & Wang Jinjuan & Ding Juan & Zhang Sanguo & Li Qizhai, 2019. "A powerful test for ordinal trait genetic association analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(2), pages 1-9, April.
  • Handle: RePEc:bpj:sagmbi:v:18:y:2019:i:2:p:9:n:2
    DOI: 10.1515/sagmb-2017-0066
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2017-0066
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2017-0066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cosslett, Stephen R, 1981. "Maximum Likelihood Estimator for Choice-Based Samples," Econometrica, Econometric Society, vol. 49(5), pages 1289-1316, September.
    2. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response‐selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438, April.
    3. Paul F O’Reilly & Clive J Hoggart & Yotsawat Pomyen & Federico C F Calboli & Paul Elliott & Marjo-Riitta Jarvelin & Lachlan J M Coin, 2012. "MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-1, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    2. Esmeralda A. Ramalho & Richard J. Smith, 2013. "Discrete Choice Non-Response," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(1), pages 343-364.
    3. Weiwei Wang & Daniel Scharfstein & Zhiqiang Tan & Ellen J. MacKenzie, 2009. "Causal inference in outcome‐dependent two‐phase sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 947-969, November.
    4. Esmeralda Ramalho, 2004. "Covariate Measurement Error in Endogenous Stratified Samples," Economics Working Papers 2_2004, University of Évora, Department of Economics (Portugal).
    5. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    6. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    7. Kai Wang, 2014. "Testing Genetic Association by Regressing Genotype over Multiple Phenotypes," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    8. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    9. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    10. Jose A Seoane & Colin Campbell & Ian N M Day & Juan P Casas & Tom R Gaunt, 2014. "Canonical Correlation Analysis for Gene-Based Pleiotropy Discovery," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.
    11. Imbens, Guido W. & Lancaster, Tony, 1996. "Efficient estimation and stratified sampling," Journal of Econometrics, Elsevier, vol. 74(2), pages 289-318, October.
    12. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    13. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    14. Jonas Metzger, 2022. "Adversarial Estimators," Papers 2204.10495, arXiv.org, revised Jun 2022.
    15. Wayne E. Baker & Nathaniel Bulkley, 2014. "Paying It Forward vs. Rewarding Reputation: Mechanisms of Generalized Reciprocity," Organization Science, INFORMS, vol. 25(5), pages 1493-1510, October.
    16. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    17. Norman E. Breslow, 2003. "Are Statistical Contributions to Medicine Undervalued?," Biometrics, The International Biometric Society, vol. 59(1), pages 1-8, March.
    18. Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
    19. Judith Clarke & Nilanjana Roy & Marsha Courchane, 2009. "On the robustness of racial discrimination findings in mortgage lending studies," Applied Economics, Taylor & Francis Journals, vol. 41(18), pages 2279-2297.
    20. Ramalho Esmeralda A., 2010. "Covariate Measurement Error: Bias Reduction under Response-Based Sampling," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:18:y:2019:i:2:p:9:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.