IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i2p207-219.html
   My bibliography  Save this article

On the robustness of weighted methods for fitting models to case–control data

Author

Listed:
  • Alastair Scott
  • Chris Wild

Abstract

Summary. We compare the robustness under model misspecification of two approaches to fitting logistic regression models with unmatched case–control data. One is the standard survey approach based on weighted versions of population estimating equations. The other is the likelihood‐based approach that is standard in medical applications. The conventional view is that the (less efficient) survey‐weighted approach leads to greater robustness. We conclude that this view is not always justified.

Suggested Citation

  • Alastair Scott & Chris Wild, 2002. "On the robustness of weighted methods for fitting models to case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 207-219, May.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:2:p:207-219
    DOI: 10.1111/1467-9868.00333
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00333
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Xie & Charles F. Manski, 1989. "The Logit Model and Response-Based Samples," Sociological Methods & Research, , vol. 17(3), pages 283-302, February.
    2. Manski, Charles F. & Thompson, T. Scott, 1989. "Estimation of best predictors of binary response," Journal of Econometrics, Elsevier, vol. 40(1), pages 97-123, January.
    3. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response‐selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Skinner, Chris J., 2018. "Analysis of categorical data for complex surveys," LSE Research Online Documents on Economics 89707, London School of Economics and Political Science, LSE Library.
    2. Robert B. Nielsen & Martin C. Seay, 2014. "Complex Samples and Regression-Based Inference: Considerations for Consumer Researchers," Journal of Consumer Affairs, Wiley Blackwell, vol. 48(3), pages 603-619, October.
    3. Alan Lee & Yuichi Hirose, 2010. "Semi-parametric efficiency bounds for regression models under response-selective sampling: the profile likelihood approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 1023-1052, December.
    4. Yanyuan Ma & Raymond J. Carroll, 2016. "Semiparametric estimation in the secondary analysis of case–control studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 127-151, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    2. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    3. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    4. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    5. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    6. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    7. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    8. Caudill, Steven B., 2003. "Predicting discrete outcomes with the maximum score estimator: the case of the NCAA men's basketball tournament," International Journal of Forecasting, Elsevier, vol. 19(2), pages 313-317.
    9. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    10. Pamela Giustinelli, 2016. "Group Decision Making With Uncertain Outcomes: Unpacking Child–Parent Choice Of The High School Track," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 573-602, May.
    11. Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
    12. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
    13. J. F. Lawless, 2018. "Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 28-44, January.
    14. Tatiana Komarova, 2012. "Binary Choice Models with Discrete Regressors: Identification and Misspecification," STICERD - Econometrics Paper Series 559, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    15. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    16. Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Brady Ryan & Ananthika Nirmalkanna & Candemir Cigsar & Yildiz E. Yilmaz, 2023. "Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 510-539, July.
    18. James Dawber & Nicola Salvati & Enrico Fabrizi & Nikos Tzavidis, 2022. "Expectile regression for multi‐category outcomes with application to small area estimation of labour force participation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 590-619, December.
    19. Mayer, Walter J. & Wu, Chen, 2007. "Note on optimal predictors of binary response," Economics Letters, Elsevier, vol. 96(3), pages 307-308, September.
    20. repec:jss:jstsof:08:i02 is not listed on IDEAS
    21. Haibo Zhou & Rui Song & Yuanshan Wu & Jing Qin, 2011. "Statistical Inference for a Two-Stage Outcome-Dependent Sampling Design with a Continuous Outcome," Biometrics, The International Biometric Society, vol. 67(1), pages 194-202, March.
    22. Yang Li & Walter J. Mayer, 2007. "Impact of corrections for dynamic selection bias on forecasts of retention behavior," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 571-582.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:2:p:207-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.