IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v63y2011i6p1247-1275.html
   My bibliography  Save this article

Efficiency of profile likelihood in semi-parametric models

Author

Listed:
  • Yuichi Hirose

Abstract

No abstract is available for this item.

Suggested Citation

  • Yuichi Hirose, 2011. "Efficiency of profile likelihood in semi-parametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1247-1275, December.
  • Handle: RePEc:spr:aistmt:v:63:y:2011:i:6:p:1247-1275
    DOI: 10.1007/s10463-010-0280-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-010-0280-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-010-0280-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. E. Breslow & N. Chatterjee, 1999. "Design and analysis of two‐phase studies with binary outcome applied to Wilms tumour prognosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 457-468.
    2. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response‐selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brady Ryan & Ananthika Nirmalkanna & Candemir Cigsar & Yildiz E. Yilmaz, 2023. "Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 510-539, July.
    2. Xiaofei Wang & Haibo Zhou, 2006. "A Semiparametric Empirical Likelihood Method for Biased Sampling Schemes with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 62(4), pages 1149-1160, December.
    3. Constantine E. Frangakis & Stuart G. Baker, 2001. "Compliance Subsampling Designs for Comparative Research: Estimation and Optimal Planning," Biometrics, The International Biometric Society, vol. 57(3), pages 899-908, September.
    4. Sebastien J.‐P. A. Haneuse & And Jonathan C. Wakefield, 2008. "The combination of ecological and case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 73-93, February.
    5. Wenguang Sun & Marshall M. Joffe & Jinbo Chen & Steven M. Brunelli, 2010. "Design and Analysis of Multiple Events Case–Control Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1220-1229, December.
    6. S. Haneuse & J. Chen, 2011. "A Multiphase Design Strategy for Dealing with Participation Bias," Biometrics, The International Biometric Society, vol. 67(1), pages 309-318, March.
    7. Michelle Ross & Jon Wakefield, 2013. "Bayesian Inference for Two-Phase Studies with Categorical Covariates," Biometrics, The International Biometric Society, vol. 69(2), pages 469-477, June.
    8. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    9. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    10. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
    11. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    12. Judith Clarke & Marsha Courchane, 2004. "Implications of Stratified Sampling for Fair Lending Binary Logit Models," The Journal of Real Estate Finance and Economics, Springer, vol. 30(1), pages 5-31, October.
    13. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    14. Zhiwei Zhang & Howard Rockette, 2006. "Semiparametric Maximum Likelihood for Missing Covariates in Parametric Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 687-706, December.
    15. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
    16. J. F. Lawless, 2018. "Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 28-44, January.
    17. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    18. Schill, Walter & Enders, Dirk & Drescher, Karsten, 2014. "A SAS Package for Logistic Two-Phase Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i09).
    19. Haibo Zhou & Rui Song & Yuanshan Wu & Jing Qin, 2011. "Statistical Inference for a Two-Stage Outcome-Dependent Sampling Design with a Continuous Outcome," Biometrics, The International Biometric Society, vol. 67(1), pages 194-202, March.
    20. Jacob M. Maronge & Ran Tao & Jonathan S. Schildcrout & Paul J. Rathouz, 2023. "Generalized case‐control sampling under generalized linear models," Biometrics, The International Biometric Society, vol. 79(1), pages 332-343, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:63:y:2011:i:6:p:1247-1275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.