IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i1p115-122.html
   My bibliography  Save this article

Adjustment for Missingness Using Auxiliary Information in Semiparametric Regression

Author

Listed:
  • Donglin Zeng
  • Qingxia Chen

Abstract

No abstract is available for this item.

Suggested Citation

  • Donglin Zeng & Qingxia Chen, 2010. "Adjustment for Missingness Using Auxiliary Information in Semiparametric Regression," Biometrics, The International Biometric Society, vol. 66(1), pages 115-122, March.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:1:p:115-122
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2009.01231.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. F. Lawless & J. D. Kalbfleisch & C. J. Wild, 1999. "Semiparametric methods for response‐selective and missing data problems in regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 413-438, April.
    2. Qi, Lihong & Wang, C.Y. & Prentice, Ross L., 2005. "Weighted Estimators for Proportional Hazards Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1250-1263, December.
    3. C. Y. Wang & Hua Yun Chen, 2001. "Augmented Inverse Probability Weighted Estimator for Cox Missing Covariate Regression," Biometrics, The International Biometric Society, vol. 57(2), pages 414-419, June.
    4. Qin J. & Leung D. & Shao J., 2002. "Estimation With Survey Data Under Nonignorable Nonresponse or Informative Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 193-200, March.
    5. Chen, Qingxia & Zeng, Donglin & Ibrahim, Joseph G., 2007. "Sieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1309-1317, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuanghua Luo & Cheng-yi Zhang, 2016. "Nonparametric $$M$$ M -type regression estimation under missing response data," Statistical Papers, Springer, vol. 57(3), pages 641-664, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    2. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    3. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    4. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    5. Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.
    6. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    7. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.
    8. Chi-Chung Wen & Chien-Tai Lin, 2011. "Analysis of Current Status Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 760-769, September.
    9. Lihong Qi & Xu Zhang & Yanqing Sun & Lu Wang & Yichuan Zhao, 2019. "Weighted estimating equations for additive hazards models with missing covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 365-387, April.
    10. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    11. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    12. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    13. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    14. Frank Eriksson & Torben Martinussen & Søren Feodor Nielsen, 2020. "Large sample results for frequentist multiple imputation for Cox regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 969-996, August.
    15. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    16. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    17. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    19. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    20. X. Hu & Bin Zhang, 2012. "Pseudolikelihood ratio test with biased observations," Statistical Papers, Springer, vol. 53(2), pages 387-400, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:1:p:115-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.