My bibliography
Save this item
An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
- Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.
- Ji Meng Loh & Woncheol Jang, 2010. "Estimating a cosmological mass bias parameter with bootstrap bandwidth selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 761-779, November.
- Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2024. "Goodness-of-fit test for point processes first-order intensity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Shengde Liang & Sudipto Banerjee & Bradley P. Carlin, 2009. "Bayesian Wombling for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(4), pages 1243-1253, December.
- Yongtao Guan, 2008. "Variance estimation for statistics computed from inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 175-190, February.
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
- Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
- Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
- Jieying Jiao & Guanyu Hu & Jun Yan, 2021. "Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
- Yolanda Caballero & Ramón Giraldo & Jorge Mateu, 2022. "A spatial randomness test based on the box-counting dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 499-524, September.
- P. A. Henrys & P. E. Brown, 2009. "Inference for Clustered Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(2), pages 423-430, June.
- Jalilian, Abdollah, 2016. "On the higher order product density functions of a Neyman–Scott cluster point process," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 144-150.
- Coeurjolly, Jean-François & Reynaud-Bouret, Patricia, 2019. "A concentration inequality for inhomogeneous Neyman–Scott point processes," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 30-34.
- Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
- Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
- Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
- Diego Giuliani & Giuseppe Arbia & Giuseppe Espa, 2014. "Weighting Ripley’s K-Function to Account for the Firm Dimension in the Analysis of Spatial Concentration," International Regional Science Review, , vol. 37(3), pages 251-272, July.
- Chong Deng & Yongtao Guan & Rasmus P. Waagepetersen & Jingfei Zhang, 2017. "Second‐order quasi‐likelihood for spatial point processes," Biometrics, The International Biometric Society, vol. 73(4), pages 1311-1320, December.
- Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
- Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
- Biscio, Christophe Ange Napoléon & Poinas, Arnaud & Waagepetersen, Rasmus, 2018. "A note on gaps in proofs of central limit theorems," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 7-10.
- Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
- Ben C. Stevenson & David L. Borchers & Rachel M. Fewster, 2019. "Cluster capture‐recapture to account for identification uncertainty on aerial surveys of animal populations," Biometrics, The International Biometric Society, vol. 75(1), pages 326-336, March.
- Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
- Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
- Meiyu Jia & Jintun Zhang & Zhenhui Song & Sehrish Sadia, 2022. "Spatial Pattern and Ecological Process Difference Analyses of the Boundary Habitats of a Treeline Patch: A Case Study from the Li Mountain, North China," Land, MDPI, vol. 11(11), pages 1-18, November.
- Zhang, Tonglin & Mateu, Jorge, 2019. "Substationarity for spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 22-36.
- Rasmus Waagepetersen & Yongtao Guan, 2009. "Two‐step estimation for inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 685-702, June.
- T. Mrkvička, 2014. "Distinguishing Different Types of Inhomogeneity in Neyman–Scott Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 385-395, June.
- R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
- Deng, C. & Waagepetersen, R.P. & Wang, M. & Guan, Y., 2018. "A fast spectral quasi-likelihood approach for spatial point processes," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 59-64.