IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p2064-d975508.html
   My bibliography  Save this article

Spatial Pattern and Ecological Process Difference Analyses of the Boundary Habitats of a Treeline Patch: A Case Study from the Li Mountain, North China

Author

Listed:
  • Meiyu Jia

    (School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China)

  • Jintun Zhang

    (Key Laboratory of Biodiversity Sciences and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China)

  • Zhenhui Song

    (School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Sehrish Sadia

    (Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan)

Abstract

Treeline patches are among Earth’s most sensitive and are important model ecosystems for assessing climate change trends. To explore ecological factors that limit the species’ survival in treelines, the treeline patch of Li Mountain National Nature Reserve was selected as the research site. Pinus armandii ( P. armandii ), Betula albo-sinensis ( B. albo-sinensis ), and Betula utilis ( B. utilis ) were selected as research species based on their dominance. Two 50 m × 50 m plots were established separately from the upper and lower limits of the highest treeline patch for point pattern analysis. Five 10 m × 10 m quadrats per plot were sampled to investigate the flora and environmental factors. The results showed that: (1) Slope and community composition at tree layer in quadrates had significant differences between upper and lower limits. Pinus armandii had a greater population size at the upper limit. Seedling recruitment restricted population development for B. albo-sinensis at the lower limit and B. utilis at the upper limit and less regeneration of B. albo-sinensis at the upper limit. (2) More aggregation scales occurred at the upper limit, and P. armandii had more aggregation scales than the other two species at 0–25 m. The heterogeneity caused by density distribution affected P. armandii pattern at the upper limit, and heterogeneity of seed dispersal could explain species patterns in both limits. Distinctness of size difference may have an influence on inter-specific species correlations.

Suggested Citation

  • Meiyu Jia & Jintun Zhang & Zhenhui Song & Sehrish Sadia, 2022. "Spatial Pattern and Ecological Process Difference Analyses of the Boundary Habitats of a Treeline Patch: A Case Study from the Li Mountain, North China," Land, MDPI, vol. 11(11), pages 1-18, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2064-:d:975508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/2064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/2064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuno Carvalhais & Matthias Forkel & Myroslava Khomik & Jessica Bellarby & Martin Jung & Mirco Migliavacca & Mingquan Μu & Sassan Saatchi & Maurizio Santoro & Martin Thurner & Ulrich Weber & Bernhard A, 2014. "Global covariation of carbon turnover times with climate in terrestrial ecosystems," Nature, Nature, vol. 514(7521), pages 213-217, October.
    2. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    3. Janneke Hille Ris Lambers & James S. Clark & Brian Beckage, 2002. "Density-dependent mortality and the latitudinal gradient in species diversity," Nature, Nature, vol. 417(6890), pages 732-735, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    2. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    4. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    5. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    6. Christopher Wills & Kyle E Harms & Thorsten Wiegand & Ruwan Punchi-Manage & Gregory S Gilbert & David Erickson & W John Kress & Stephen P Hubbell & C V Savitri Gunatilleke & I A U Nimal Gunatilleke, 2016. "Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-24, June.
    7. Coeurjolly, Jean-François & Reynaud-Bouret, Patricia, 2019. "A concentration inequality for inhomogeneous Neyman–Scott point processes," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 30-34.
    8. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    9. Diego Giuliani & Giuseppe Arbia & Giuseppe Espa, 2014. "Weighting Ripley’s K-Function to Account for the Firm Dimension in the Analysis of Spatial Concentration," International Regional Science Review, , vol. 37(3), pages 251-272, July.
    10. Mazzoleni, Stefano & Bonanomi, Giuliano & Giannino, Francesco & Incerti, Guido & Dekker, Stefan C. & Rietkerk, Max, 2010. "Modelling the effects of litter decomposition on tree diversity patterns," Ecological Modelling, Elsevier, vol. 221(23), pages 2784-2792.
    11. Xiaobo Zhu & Honglin He & Mingguo Ma & Xiaoli Ren & Li Zhang & Fawei Zhang & Yingnian Li & Peili Shi & Shiping Chen & Yanfen Wang & Xiaoping Xin & Yaoming Ma & Yu Zhang & Mingyuan Du & Rong Ge & Na Ze, 2020. "Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    12. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    13. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    14. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    15. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    16. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    17. Efrén López-Blanco & Elmer Topp-Jørgensen & Torben R. Christensen & Morten Rasch & Henrik Skov & Marie F. Arndal & M. Syndonia Bret-Harte & Terry V. Callaghan & Niels M. Schmidt, 2024. "Towards an increasingly biased view on Arctic change," Nature Climate Change, Nature, vol. 14(2), pages 152-155, February.
    18. Jieying Jiao & Guanyu Hu & Jun Yan, 2021. "Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    19. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    20. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2064-:d:975508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.