IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v171y2019icp22-36.html
   My bibliography  Save this article

Substationarity for spatial point processes

Author

Listed:
  • Zhang, Tonglin
  • Mateu, Jorge

Abstract

This article aims to introduce the concept of substationarity for spatial point processes (SPPs). Substationarity is a new concept that has never been studied in the literature. Substationarity means that the distribution of an SPP can only be invariant under location shifts within a linear subspace of the domain. This notion lies theoretically between stationarity and nonstationarity. To formally propose the approach, the article provides the definition of substationarity and estimation of the first-order intensity function, including the subspace. As this may be unknown, we recommend using a parametric method to estimate the linear subspace and a nonparametric one to estimate the first-order intensity function given the linear subspace. It is thus a semiparametric approach. The simulation study shows that both the estimators of the linear subspace and the first-order intensity function are reliable. In an application to a Canadian forest wildfire data set, the article concludes that substationarity of wildfire occurrences may be assumed along the longitude, indicating that latitude is a more important factor than longitude in Canadian forest wildfire studies.

Suggested Citation

  • Zhang, Tonglin & Mateu, Jorge, 2019. "Substationarity for spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 22-36.
  • Handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:22-36
    DOI: 10.1016/j.jmva.2018.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18301751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesper Møller & Rasmus P. Waagepetersen, 2007. "Modern Statistics for Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 643-684, December.
    2. Yongtao Guan, 2008. "A KPSS Test for Stationarity for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 64(3), pages 800-806, September.
    3. Zhang, Tonglin & Zhuang, Run, 2017. "Testing proportionality between the first-order intensity functions of spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 72-82.
    4. P. J. Diggle & V. Gómez-Rubio & P. E. Brown & A. G. Chetwynd & S. Gooding, 2007. "Second-Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data," Biometrics, The International Biometric Society, vol. 63(2), pages 550-557, June.
    5. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    6. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    7. Ivanoff, Gail, 1982. "Central limit theorems for point processes," Stochastic Processes and their Applications, Elsevier, vol. 12(2), pages 171-186, March.
    8. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    9. Yongtao Guan & Ye Shen, 2010. "A weighted estimating equation approach for inhomogeneous spatial point processes," Biometrika, Biometrika Trust, vol. 97(4), pages 867-880.
    10. Guan, Yongtao, 2009. "On Nonparametric Variance Estimation for Second-Order Statistics of Inhomogeneous Spatial Point Processes With a Known Parametric Intensity Form," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1482-1491.
    11. P. A. Henrys & P. E. Brown, 2009. "Inference for Clustered Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(2), pages 423-430, June.
    12. Sung Nok Chiu & Kwong Ip Liu, 2013. "Stationarity Tests for Spatial Point Processes using Discrepancies," Biometrics, The International Biometric Society, vol. 69(2), pages 497-507, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2024. "Goodness-of-fit test for point processes first-order intensity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    2. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    3. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    4. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    5. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    6. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    7. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    8. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    9. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    10. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    11. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    12. P. A. Henrys & P. E. Brown, 2009. "Inference for Clustered Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(2), pages 423-430, June.
    13. T. Mrkvička, 2014. "Distinguishing Different Types of Inhomogeneity in Neyman–Scott Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 385-395, June.
    14. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    16. Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
    17. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    18. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    19. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    20. Eric Marcon & Florence Puech, 2009. "Generalizing Ripley's K function to inhomogeneous populations," Working Papers halshs-00372631, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:22-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.