IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p326-336.html
   My bibliography  Save this article

Cluster capture‐recapture to account for identification uncertainty on aerial surveys of animal populations

Author

Listed:
  • Ben C. Stevenson
  • David L. Borchers
  • Rachel M. Fewster

Abstract

Capture‐recapture methods for estimating wildlife population sizes almost always require their users to identify every detected animal. Many modern‐day wildlife surveys detect animals without physical capture—visual detection by cameras is one such example. However, for every pair of detections, the surveyor faces a decision that is often fraught with uncertainty: are they linked to the same individual? An inability to resolve every such decision to a high degree of certainty prevents the use of standard capture‐recapture methods, impeding the estimation of animal density. Here, we develop an estimator for aerial surveys, on which two planes or unmanned vehicles (drones) fly a transect over the survey region, detecting individuals via high‐definition cameras. Identities remain unknown, so one cannot discern if two detections match to the same animal; however, detections in close proximity are more likely to match. By modeling detection locations as a clustered point process, we extend recently developed methodology and propose a precise and computationally efficient estimator of animal density that does not require individual identification. We illustrate the method with an aerial survey of porpoise, on which cameras detect individuals at the surface of the sea, and we need to take account of the fact that they are not always at the surface.

Suggested Citation

  • Ben C. Stevenson & David L. Borchers & Rachel M. Fewster, 2019. "Cluster capture‐recapture to account for identification uncertainty on aerial surveys of animal populations," Biometrics, The International Biometric Society, vol. 75(1), pages 326-336, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:326-336
    DOI: 10.1111/biom.12983
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12983
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guan, Yongtao, 2006. "A Composite Likelihood Approach in Fitting Spatial Point Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1502-1512, December.
    2. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    3. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    4. D. L. Borchers & M. G. Efford, 2008. "Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 64(2), pages 377-385, June.
    5. Janine A. Wright & Richard J. Barker & Matthew R. Schofield & Alain C. Frantz & Andrea E. Byrom & Dianne M. Gleeson, 2009. "Incorporating Genotype Uncertainty into Mark–Recapture-Type Models For Estimating Abundance Using DNA Samples," Biometrics, The International Biometric Society, vol. 65(3), pages 833-840, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David L. Borchers & Peter Nightingale & Ben C. Stevenson & Rachel M. Fewster, 2022. "A latent capture history model for digital aerial surveys," Biometrics, The International Biometric Society, vol. 78(1), pages 274-285, March.
    2. Felix T. Petersma & Len Thomas & Aaron M. Thode & Danielle Harris & Tiago A. Marques & Gisela V. Cheoo & Katherine H. Kim, 2024. "Accommodating False Positives Within Acoustic Spatial Capture–Recapture, with Variable Source Levels, Noisy Bearings and an Inhomogeneous Spatial Density," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 471-490, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    2. Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
    3. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    4. Ushio Tanaka & Yosihiko Ogata, 2014. "Identification and estimation of superposed Neyman–Scott spatial cluster processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 687-702, August.
    5. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    6. Murray G. Efford & Matthew R. Schofield, 2020. "A spatial open‐population capture‐recapture model," Biometrics, The International Biometric Society, vol. 76(2), pages 392-402, June.
    7. Yolanda Caballero & Ramón Giraldo & Jorge Mateu, 2022. "A spatial randomness test based on the box-counting dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 499-524, September.
    8. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    9. Jalilian, Abdollah, 2016. "On the higher order product density functions of a Neyman–Scott cluster point process," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 144-150.
    10. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    11. Richard J. Barker & Matthew R. Schofield & Janine A. Wright & Alain C. Frantz & Chris Stevens, 2014. "Closed-population capture–recapture modeling of samples drawn one at a time," Biometrics, The International Biometric Society, vol. 70(4), pages 775-782, December.
    12. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    13. Michael R. Whitehead & Rod Peakall, 2013. "Short-term but not long-term patch avoidance in an orchid-pollinating solitary wasp," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(1), pages 162-168.
    14. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    15. Yongtao Guan, 2008. "Variance estimation for statistics computed from inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 175-190, February.
    16. David L. Borchers & Tiago A. Marques, 2017. "From distance sampling to spatial capture–recapture," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 475-494, October.
    17. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    18. Tomáš Jůnek & Pavla Jůnková Vymyslická & Kateřina Hozdecká & Pavla Hejcmanová, 2015. "Application of Spatial and Closed Capture-Recapture Models on Known Population of the Western Derby Eland (Taurotragus derbianus derbianus) in Senegal," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-16, September.
    19. Ji Meng Loh & Woncheol Jang, 2010. "Estimating a cosmological mass bias parameter with bootstrap bandwidth selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 761-779, November.
    20. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:326-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.