IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v117y2016icp144-150.html
   My bibliography  Save this article

On the higher order product density functions of a Neyman–Scott cluster point process

Author

Listed:
  • Jalilian, Abdollah

Abstract

A general formula and upper bounds for the intensity-reweighted product density functions of Neyman–Scott processes are obtained. Analytical expressions are presented for the intensity-reweighted product and cumulant densities of the Thomas process, an important special case of Neyman–Scott processes.

Suggested Citation

  • Jalilian, Abdollah, 2016. "On the higher order product density functions of a Neyman–Scott cluster point process," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 144-150.
  • Handle: RePEc:eee:stapro:v:117:y:2016:i:c:p:144-150
    DOI: 10.1016/j.spl.2016.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    2. Rasmus Waagepetersen & Yongtao Guan, 2009. "Two‐step estimation for inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 685-702, June.
    3. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    4. D. Stoyan & U. Bertram & H. Wendrock, 1993. "Estimation variances for estimators of product densities and pair correlation functions of planar point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 211-221, June.
    5. K. Schladitz & A. J. Baddeley, 2000. "A Third Order Point Process Characteristic," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 657-671, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdollah Jalilian & Jorge Mateu, 2023. "Assessing similarities between spatial point patterns with a Siamese neural network discriminant model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 21-42, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    2. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    3. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    4. T. Mrkvička, 2014. "Distinguishing Different Types of Inhomogeneity in Neyman–Scott Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 385-395, June.
    5. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    6. Tilman M. Davies & Martin L. Hazelton, 2013. "Assessing minimum contrast parameter estimation for spatial and spatiotemporal log‐Gaussian Cox processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 355-389, November.
    7. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    8. Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
    9. Chong Deng & Yongtao Guan & Rasmus P. Waagepetersen & Jingfei Zhang, 2017. "Second‐order quasi‐likelihood for spatial point processes," Biometrics, The International Biometric Society, vol. 73(4), pages 1311-1320, December.
    10. Yongtao Guan, 2008. "Variance estimation for statistics computed from inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 175-190, February.
    11. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    12. Deng, C. & Waagepetersen, R.P. & Wang, M. & Guan, Y., 2018. "A fast spectral quasi-likelihood approach for spatial point processes," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 59-64.
    13. Rasmus Waagepetersen & Yongtao Guan, 2009. "Two‐step estimation for inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 685-702, June.
    14. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    15. Guan, Yongtao, 2007. "A least-squares cross-validation bandwidth selection approach in pair correlation function estimations," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1722-1729, December.
    16. Shengde Liang & Sudipto Banerjee & Bradley P. Carlin, 2009. "Bayesian Wombling for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(4), pages 1243-1253, December.
    17. Carlos Comas & Jorge Mateu & Aila Särkkä, 2010. "A third‐order point process characteristic for multi‐type point processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 19-44, February.
    18. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    19. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    20. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:117:y:2016:i:c:p:144-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.