IDEAS home Printed from https://ideas.repec.org/r/bes/jnlasa/v102y2007p201-210.html
   My bibliography  Save this item

Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
  2. Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
  3. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
  4. Alessio Farcomeni & Luca Greco, 2015. "S-estimation of hidden Markov models," Computational Statistics, Springer, vol. 30(1), pages 57-80, March.
  5. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
  6. Delattre, M. & Lavielle, M., 2012. "Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2073-2085.
  7. Silvia Bacci & Bruno Bertaccini, 2022. "A Mixture Hidden Markov Model to Mine Students’ University Curricula," Data, MDPI, vol. 7(2), pages 1-19, February.
  8. Jesse D. Raffa & Joel A. Dubin, 2015. "Multivariate longitudinal data analysis with mixed effects hidden Markov models," Biometrics, The International Biometric Society, vol. 71(3), pages 821-831, September.
  9. Lauren Hoskovec & Matthew D. Koslovsky & Kirsten Koehler & Nicholas Good & Jennifer L. Peel & John Volckens & Ander Wilson, 2023. "Infinite hidden Markov models for multiple multivariate time series with missing data," Biometrics, The International Biometric Society, vol. 79(3), pages 2592-2604, September.
  10. Maria Marino & Marco Alfó, 2015. "Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 483-502, December.
  11. Ari Hyytinen & Frode Steen & Otto Toivanen, 2018. "Cartels Uncovered," American Economic Journal: Microeconomics, American Economic Association, vol. 10(4), pages 190-222, November.
  12. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
  13. Dannemann, Jorn & Holzmann, Hajo, 2008. "The likelihood ratio test for hidden Markov models in two-sample problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1850-1859, January.
  14. Eric Lucas dos Santos Cabral & Mario Orestes Aguirre Gonzalez & Priscila da Cunha Jacome Vidal & Joao Florencio da Costa Junior & Rafael Monteiro de Vasconcelos & David Cassimiro de Melo & Ruan Lucas , 2024. "Optimization Models for Operations and Maintenance of Offshore Wind Turbines Based on Artificial Intelligence and Operations Research: A Systematic Literature Review," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(3), pages 1-1, June.
  15. Ann E. McKellar & Roland Langrock & Jeffrey R. Walters & Dylan C. Kesler, 2015. "Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 148-157.
  16. Edward H. Ip & Alison Snow Jones & D. Alex Heckert & Qiang Zhang & Edward D. Gondolf, 2010. "Latent Markov Model for Analyzing Temporal Configuration for Violence Profiles and Trajectories in a Sample of Batterers," Sociological Methods & Research, , vol. 39(2), pages 222-255, November.
  17. Iain L. MacDonald, 2014. "Numerical Maximisation of Likelihood: A Neglected Alternative to EM?," International Statistical Review, International Statistical Institute, vol. 82(2), pages 296-308, August.
  18. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
  19. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
  20. Lin, Yiqi & Song, Xinyuan, 2022. "Order selection for regression-based hidden Markov model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  21. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
  22. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
  23. Yu Luo & David A. Stephens & Aman Verma & David L. Buckeridge, 2021. "Bayesian latent multi‐state modeling for nonequidistant longitudinal electronic health records," Biometrics, The International Biometric Society, vol. 77(1), pages 78-90, March.
  24. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
  25. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
  26. Victor Medina-Olivares & Raffaella Calabrese, 2023. "Detecting Consumers' Financial Vulnerability using Open Banking Data: Evidence from UK Payday Loans," Papers 2306.01749, arXiv.org.
  27. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
  28. Ruijin Lu & Tonja R. Nansel & Zhen Chen, 2023. "A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 288-308, April.
  29. Edward Ip & Qiang Zhang & Jack Rejeski & Tammy Harris & Stephen Kritchevsky, 2013. "Partially Ordered Mixed Hidden Markov Model for the Disablement Process of Older Adults," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 370-384, June.
  30. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
  31. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
  32. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
  33. Xia, Ye-Mao & Tang, Nian-Sheng, 2019. "Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 190-211.
  34. Yoonjung An & Mintak Han & Yongtae Park, 2017. "Identifying dynamic knowledge flow patterns of business method patents with a hidden Markov model," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 783-802, November.
  35. Byeongheon Lee & Joowon Park & Yongku Kim, 2023. "Hidden Markov Model Based on Logistic Regression," Mathematics, MDPI, vol. 11(20), pages 1-12, October.
  36. Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
  37. Rachel MacKay Altman & Andrew Henrey, 2018. "Practical considerations when analyzing discrete survival times using the grouped relative risk model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 532-547, July.
  38. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
  39. Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
  40. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
  41. Param Vir Singh & Yong Tan & Nara Youn, 2011. "A Hidden Markov Model of Developer Learning Dynamics in Open Source Software Projects," Information Systems Research, INFORMS, vol. 22(4), pages 790-807, December.
  42. Florence Chaubert-Pereira & Yann Guédon & Christian Lavergne & Catherine Trottier, 2010. "Markov and Semi-Markov Switching Linear Mixed Models Used to Identify Forest Tree Growth Components," Biometrics, The International Biometric Society, vol. 66(3), pages 753-762, September.
  43. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
  44. Langrock, R. & Zucchini, W., 2011. "Hidden Markov models with arbitrary state dwell-time distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 715-724, January.
  45. Walter Zucchini & David Raubenheimer & Iain L. MacDonald, 2008. "Modeling Time Series of Animal Behavior by Means of a Latent‐State Model with Feedback," Biometrics, The International Biometric Society, vol. 64(3), pages 807-815, September.
  46. Altman, Rachel MacKay, 2008. "A variance component test for mixed hidden Markov models," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1885-1893, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.