IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i9d10.1007_s00362-024-01608-3.html
   My bibliography  Save this article

Model selection for mixture hidden Markov models: an application to clickstream data

Author

Listed:
  • Furio Urso

    (University of Palermo)

  • Antonino Abbruzzo

    (University of Palermo)

  • Marcello Chiodi

    (University of Palermo)

  • Maria Francesca Cracolici

    (University of Palermo)

Abstract

In a clickstream analysis setting, Mixture Hidden Markov Models (MHMMs) can be used to examine categorical sequences assuming they evolve according to a mixture of latent Markov processes, each related to a different subpopulation. These models involve identifying both the number of subpopulations and hidden states. This study proposes a model selection criterion based on an integrated completed likelihood approach that accounts for the two latent classes in the model. We implemented a Monte Carlo simulation study to compare selection criteria performance. In scenarios characterised by categorical short length sequences, our proposed measure outperforms the most commonly used model selection criteria in identifying components and states. The paper presents a case study on clickstream data collected from the website of a company operating in the hospitality industry and modelled by an MHMM selected by the proposed score.

Suggested Citation

  • Furio Urso & Antonino Abbruzzo & Marcello Chiodi & Maria Francesca Cracolici, 2024. "Model selection for mixture hidden Markov models: an application to clickstream data," Statistical Papers, Springer, vol. 65(9), pages 5797-5834, December.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01608-3
    DOI: 10.1007/s00362-024-01608-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01608-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01608-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01608-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.