Nonparametric inference in hidden Markov models using P-splines
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
- D. L. Borchers & W. Zucchini & M. P. Heide-Jørgensen & A. Cañadas & R. Langrock, 2013. "Using Hidden Markov Models to Deal with Availability Bias on Line Transect Surveys," Biometrics, The International Biometric Society, vol. 69(3), pages 703-713, September.
- Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
- Walter Zucchini & David Raubenheimer & Iain L. MacDonald, 2008. "Modeling Time Series of Animal Behavior by Means of a Latent‐State Model with Feedback," Biometrics, The International Biometric Society, vol. 64(3), pages 807-815, September.
- Krivobokova, Tatyana & Kneib, Thomas & Claeskens, Gerda, 2010. "Simultaneous Confidence Bands for Penalized Spline Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 852-863.
- Iain L. MacDonald, 2014. "Numerical Maximisation of Likelihood: A Neglected Alternative to EM?," International Statistical Review, International Statistical Institute, vol. 82(2), pages 296-308, August.
- Roger Pradel, 2005. "Multievent: An Extension of Multistate Capture–Recapture Models to Uncertain States," Biometrics, The International Biometric Society, vol. 61(2), pages 442-447, June.
- Gilles Celeux & Jean-Baptiste Durand, 2008. "Selecting hidden Markov model state number with cross-validated likelihood," Computational Statistics, Springer, vol. 23(4), pages 541-564, October.
- Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
- Jan Bulla & Andreas Berzel, 2008. "Computational issues in parameter estimation for stationary hidden Markov models," Computational Statistics, Springer, vol. 23(1), pages 1-18, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pohle, Jennifer & Adam, Timo & Beumer, Larissa T., 2022. "Flexible estimation of the state dwell-time distribution in hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
- Peijie Wang & Hui Zhao & Jianguo Sun, 2016. "Regression analysis of case K interval‐censored failure time data in the presence of informative censoring," Biometrics, The International Biometric Society, vol. 72(4), pages 1103-1112, December.
- Daniel M Coffey & Mark A Royer & Carl G Meyer & Kim N Holland, 2020. "Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus)," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
- Timo Adam & Roland Langrock & Christian H. Weiß, 2019. "Penalized estimation of flexible hidden Markov models for time series of counts," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 87-104, August.
- Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
- Vianey Leos-Barajas & Eric J. Gangloff & Timo Adam & Roland Langrock & Floris M. Beest & Jacob Nabe-Nielsen & Juan M. Morales, 2017. "Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 232-248, September.
- Ngandu Balekelayi & Solomon Tesfamariam, 2020. "Geoadditive Quantile Regression Model for Sewer Pipes Deterioration Using Boosting Optimization Algorithm," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
- Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
- Morteza Amini & Afarin Bayat & Reza Salehian, 2023. "hhsmm: an R package for hidden hybrid Markov/semi-Markov models," Computational Statistics, Springer, vol. 38(3), pages 1283-1335, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
- K. De Brabanter & Y. Liu & C. Hua, 2016. "Convergence rates for uniform confidence intervals based on local polynomial regression estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 31-48, March.
- Peter Pütz & Thomas Kneib, 2018. "A penalized spline estimator for fixed effects panel data models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 145-166, April.
- Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
- Iain L. MacDonald, 2014. "Numerical Maximisation of Likelihood: A Neglected Alternative to EM?," International Statistical Review, International Statistical Institute, vol. 82(2), pages 296-308, August.
- Manuel Wiesenfarth & Tatyana Krivobokova & Stephan Klasen & Stefan Sperlich, 2012.
"Direct Simultaneous Inference in Additive Models and Its Application to Model Undernutrition,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1286-1296, December.
- Manuel Wiesenfarth & Tatyana Krivobokova & Stephan Klasen & Stefan Sperlich, 2010. "Direct Simultaneous Inference in Additive Models and its Application to Model Undernutrition," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 50, Courant Research Centre PEG, revised 21 Jul 2011.
- Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
- Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
- Peter Pütz & Thomas Kneib, 2016. "A Penalized Spline Estimator for Fixed Effects Panel Data Models," SOEPpapers on Multidisciplinary Panel Data Research 827, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
- Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
- Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
- Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
- Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
- Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
- Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
- Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
- Yu, Jun, 2012.
"A semiparametric stochastic volatility model,"
Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
- Jun Yu, 2008. "A Semiparametric Stochastic Volatility Model," Working Papers CoFie-04-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:520-528. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.