IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v9y2015i4p483-502.html
   My bibliography  Save this article

Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition

Author

Listed:
  • Maria Marino
  • Marco Alfó

Abstract

Longitudinal data are characterized by the dependence between observations from the same individual. In a regression perspective, such a dependence can be usefully ascribed to unobserved features (covariates) specific to each individual. On these grounds, random parameter models with time-constant or time-varying structure are now well established in the generalized linear model context. In the quantile regression framework, specifications based on random parameters have only recently known a flowering interest. We start from the recent proposal by Farcomeni (Stat Comput 22:141–152, 2012 ) on longitudinal quantile hidden Markov models, and extend it to handle potentially informative missing data mechanisms. In particular, we focus on monotone missingness which may lead to selection bias and, therefore, to unreliable inferences on model parameters. We detail the proposed approach by re-analyzing a well known dataset on the dynamics of CD4 cell counts in HIV seroconverters and by means of a simulation study reported in the supplementary material. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Maria Marino & Marco Alfó, 2015. "Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 483-502, December.
  • Handle: RePEc:spr:advdac:v:9:y:2015:i:4:p:483-502
    DOI: 10.1007/s11634-015-0222-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-015-0222-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-015-0222-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    2. Grace Y. Yi & Wenqing He, 2009. "Median Regression Models for Longitudinal Data with Dropouts," Biometrics, The International Biometric Society, vol. 65(2), pages 618-625, June.
    3. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    4. Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
    5. Antonello Maruotti, 2011. "Mixed Hidden Markov Models for Longitudinal Data: An Overview," International Statistical Review, International Statistical Institute, vol. 79(3), pages 427-454, December.
    6. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    7. Antonello Maruotti, 2015. "Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 84-109, March.
    8. Liu Yuan & Bottai Matteo, 2009. "Mixed-Effects Models for Conditional Quantiles with Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-24, November.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    11. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    12. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    13. Jason Roy, 2003. "Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model," Biometrics, The International Biometric Society, vol. 59(4), pages 829-836, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
    2. Rahim Alhamzawi & Haithem Taha Mohammad Ali, 2020. "Brq: an R package for Bayesian quantile regression," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 313-328, December.
    3. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    2. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
    3. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    4. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    5. Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
    6. Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
    7. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    8. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    9. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    10. Duc Hong Vo & Thach Ngoc Pham, 2017. "Systematic Risk in Energy Businesses: Empirical Evidence for the ASEAN," International Journal of Economics and Financial Issues, Econjournals, vol. 7(1), pages 553-565.
    11. Qadan, Mahmoud & Jacob, Maram, 2022. "The value premium and investors' appetite for risk," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 194-219.
    12. Fattouh, Bassam & Scaramozzino, Pasquale & Harris, Laurence, 2005. "Capital structure in South Korea: a quantile regression approach," Journal of Development Economics, Elsevier, vol. 76(1), pages 231-250, February.
    13. Patricia Stefani & Ciro Biderman, 2006. "Returns to Education and Wage Differentials in Brazil: A Quantile Approach," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-6.
    14. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    15. Nicola Orsini & Matteo Bottai, 2011. "Logistic quantile regression in Stata," Stata Journal, StataCorp LP, vol. 11(3), pages 327-344, September.
    16. Raul A. Barreto & Anthony W. Hughes, 2004. "Under Performers and Over Achievers: A Quantile Regression Analysis of Growth," The Economic Record, The Economic Society of Australia, vol. 80(248), pages 17-35, March.
    17. Ben Rejeb, Aymen & Arfaoui, Mongi, 2016. "Financial market interdependencies: A quantile regression analysis of volatility spillover," Research in International Business and Finance, Elsevier, vol. 36(C), pages 140-157.
    18. Nicolai Kristensen & Dorte Verner, 2008. "Labor Market Distortions in Côte d'Ivoire: Analyses of Employer‐Employee Data from the Manufacturing Sector," African Development Review, African Development Bank, vol. 20(3), pages 343-377.
    19. Biswabhusan Bhuyan & Bimal Kishore Sahoo & Damodar Suar, 2020. "Quantile Regression Analysis of Predictors of Calorie Demand in India: An Implication for Sustainable Development Goals," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(4), pages 825-859, December.
    20. Anton, Sorin Gabriel, 2021. "The impact of temperature increase on firm profitability. Empirical evidence from the European energy and gas sectors," Applied Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:9:y:2015:i:4:p:483-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.