Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-015-0222-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
- Liu Yuan & Bottai Matteo, 2009. "Mixed-Effects Models for Conditional Quantiles with Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-24, November.
- Grace Y. Yi & Wenqing He, 2009. "Median Regression Models for Longitudinal Data with Dropouts," Biometrics, The International Biometric Society, vol. 65(2), pages 618-625, June.
- Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
- Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
- Antonello Maruotti, 2011. "Mixed Hidden Markov Models for Longitudinal Data: An Overview," International Statistical Review, International Statistical Institute, vol. 79(3), pages 427-454, December.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
- Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
- Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
- Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
- Jason Roy, 2003. "Modeling Longitudinal Data with Nonignorable Dropouts Using a Latent Dropout Class Model," Biometrics, The International Biometric Society, vol. 59(4), pages 829-836, December.
- Antonello Maruotti, 2015. "Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 84-109, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
- Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Rahim Alhamzawi & Haithem Taha Mohammad Ali, 2020. "Brq: an R package for Bayesian quantile regression," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 313-328, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
- Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
- Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
- Machado, José A.F. & Santos Silva, J.M.C. & Wei, Kehai, 2016. "Quantiles, corners, and the extensive margin of trade," European Economic Review, Elsevier, vol. 89(C), pages 73-84.
- Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
- Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
- Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Peoples, James & Talley, Wayne K. & Thanabordeekij, Pithoon, 2006. "Shipping Deregulation's Wage Effect on Low and High Wage Dockworkers," Research in Transportation Economics, Elsevier, vol. 16(1), pages 219-249, January.
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jamil, Abd Rahim Md. & Law, Siong Hook & Mohamad Khair-Afham, M.S. & Trinugroho, Irwan, 2023. "Financial inclusion and economic uncertainty in developing countries: The role of digitalisation," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 786-806.
- Duc Hong Vo & Thach Ngoc Pham, 2017. "Systematic Risk in Energy Businesses: Empirical Evidence for the ASEAN," International Journal of Economics and Financial Issues, Econjournals, vol. 7(1), pages 553-565.
- Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
- Tobias Angel & Alexandre Berthe & Valeria Costantini & Mariagrazia D’Angeli, 2024.
"How the nature of inequality reduction matters for CO2 emissions,"
Working Papers
2024.14, Fondazione Eni Enrico Mattei.
- Angel, Tobias & Berthe, Alexandre & Costantini, Valeria & D’Angeli, Mariagrazia, 2024. "How the nature of inequality reduction matters for CO2 emissions," FEEM Working Papers 343512, Fondazione Eni Enrico Mattei (FEEM).
- Ben Rejeb, Aymen, 2017. "On the volatility spillover between lslamic and conventional stock markets: A quantile regression analysis," Research in International Business and Finance, Elsevier, vol. 42(C), pages 794-815.
- Qadan, Mahmoud & Jacob, Maram, 2022. "The value premium and investors' appetite for risk," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 194-219.
- Fattouh, Bassam & Scaramozzino, Pasquale & Harris, Laurence, 2005.
"Capital structure in South Korea: a quantile regression approach,"
Journal of Development Economics, Elsevier, vol. 76(1), pages 231-250, February.
- Fattouh, Bassam & Pasquale Scaramozzino & Laurence Hariss, 2002. "Capital structure in South Korea: A Quantile Regression Approach," Royal Economic Society Annual Conference 2002 70, Royal Economic Society.
- Bassam Fattouh & Laurence Harris & Pasquale Scaramozzino, 2003. "Capital Structure in South Korea: A Quantile Regression Approach," CEIS Research Paper 40, Tor Vergata University, CEIS.
- Mobeen Ur Rehman & Wafa Ghardallou & Nasir Ahmad & Xuan Vinh Vo & Sang Hoon Kang, 2024. "Does effect of risk and uncertainties on US sectoral returns differ across different investment horizons and market conditions," Risk Management, Palgrave Macmillan, vol. 26(1), pages 1-49, February.
- Rehman, Mobeen Ur & Vo, Xuan Vinh & McIver, Ron & Kang, Sang Hoon, 2022. "Sensitivity of US sectoral returns to energy commodities under different investment horizons and market conditions," Energy Economics, Elsevier, vol. 108(C).
More about this item
Keywords
Quantile regression; Longitudinal data; Hidden Markov models; Latent drop-out classes; 62J02;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:9:y:2015:i:4:p:483-502. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.