IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3402-3417.html
   My bibliography  Save this article

Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles

Author

Listed:
  • Benny Ren
  • Ian Barnett

Abstract

Data collected from wearable devices can shed light on an individual's pattern of behavioral and circadian routine. Phone use can be modeled as alternating processes, between the state of active use and the state of being idle. Markov chains and alternating recurrent event models are commonly used to model state transitions in cases such as these, and the incorporation of random effects can be used to introduce diurnal effects. While state labels can be derived prior to modeling dynamics, this approach omits informative regression covariates that can influence state memberships. We instead propose an alternating recurrent event proportional hazards (PH) regression to model the transitions between latent states. We propose an expectation–maximization algorithm for imputing latent state labels and estimating parameters. We show that our E‐step simplifies to the hidden Markov model (HMM) forward–backward algorithm, allowing us to recover an HMM with logistic regression transition probabilities. In addition, we show that PH modeling of discrete‐time transitions implicitly penalizes the logistic regression likelihood and results in shrinkage estimators for the relative risk. This new estimator favors an extended stay in a state and is useful for modeling diurnal rhythms. We derive asymptotic distributions for our parameter estimates and compare our approach against competing methods through simulation as well as in a digital phenotyping study that followed smartphone use in a cohort of adolescents with mood disorders.

Suggested Citation

  • Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3402-3417
    DOI: 10.1111/biom.13865
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13865
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stoner, Oliver & Economou, Theo, 2020. "An advanced hidden Markov model for hourly rainfall time series," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    3. Russell T. Shinohara & Yifei Sun & Mei-Cheng Wang, 2018. "Alternating event processes during lifetimes: population dynamics and statistical inference," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 110-125, January.
    4. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    5. Torsten Hothorn & Lisa Möst & Peter Bühlmann, 2018. "Most Likely Transformations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(1), pages 110-134, March.
    6. Lili Wang & Kevin He & Douglas E. Schaubel, 2020. "Penalized survival models for the analysis of alternating recurrent event data," Biometrics, The International Biometric Society, vol. 76(2), pages 448-459, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    2. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    3. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    4. Lamarche, Carlos & Shi, Xuan & Young, Derek S., 2024. "Conditional Quantile Functions for Zero-Inflated Longitudinal Count Data," Econometrics and Statistics, Elsevier, vol. 31(C), pages 49-65.
    5. David M Keith & Jessica A Sameoto & Freya M Keyser & Christine A Ward-Paige, 2020. "Evaluating socio-economic and conservation impacts of management: A case study of time-area closures on Georges Bank," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-25, October.
    6. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    7. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    8. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    9. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    10. Xin Jin, 2021. "Can we imitate the principal investor's behavior to learn option price?," Papers 2105.11376, arXiv.org, revised Jan 2022.
    11. Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
    12. Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    13. Nadja Klein & Torsten Hothorn & Luisa Barbanti & Thomas Kneib, 2022. "Multivariate conditional transformation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 116-142, March.
    14. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    15. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    16. Andreia Monteiro & Raquel Menezes & Maria Eduarda Silva, 2021. "Modelling informative time points: an evolutionary process approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 364-382, June.
    17. Lin, Yiqi & Song, Xinyuan, 2022. "Order selection for regression-based hidden Markov model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    19. Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    20. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3402-3417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.