IDEAS home Printed from https://ideas.repec.org/p/wop/iasawp/wp96023.html
   My bibliography  Save this paper

Asymptotically Optimal Allocation of Simulation Experiments in Discrete Stochastic Optimization

Author

Listed:
  • A. Futschik
  • G.C. Pflug

Abstract

Approximate solutions for discrete stochastic optimization problems are often obtained via simulation. It is reasonable to complement these solutions by confidence regions for the argmin-set. We address the question, how a certain total number of random draws should be distributed among the set of alternatives. We propose a one-step allocation rule which turns out to be asymptotically optimal in the case of normal errors for two goals: To minimize the costs caused by using only an approximate solution and to minimize the expected size of the confidence sets.

Suggested Citation

  • A. Futschik & G.C. Pflug, 1996. "Asymptotically Optimal Allocation of Simulation Experiments in Discrete Stochastic Optimization," Working Papers wp96023, International Institute for Applied Systems Analysis.
  • Handle: RePEc:wop:iasawp:wp96023
    as

    Download full text from publisher

    File URL: http://www.iiasa.ac.at/Publications/Documents/WP-96-023.pdf
    Download Restriction: no

    File URL: http://www.iiasa.ac.at/Publications/Documents/WP-96-023.ps
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej Ruszczyński, 1987. "A Linearization Method for Nonsmooth Stochastic Programming Problems," Mathematics of Operations Research, INFORMS, vol. 12(1), pages 32-49, February.
    2. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    3. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Y.M. Ermoliev & A. Ruszczynski, 1995. "Convex Optimization by Radial Search," Working Papers wp95036, International Institute for Applied Systems Analysis.
    5. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    8. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    9. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    10. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    11. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    12. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    13. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    14. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    15. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    16. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    17. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    18. Raymond K.-M. Cheung & Warren B. Powell, 2000. "Shape -- A Stochastic Hybrid Approximation Procedure for Two-Stage Stochastic Programs," Operations Research, INFORMS, vol. 48(1), pages 73-79, February.
    19. James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org.
    20. R. Díaz Millán & O. P. Ferreira & J. Ugon, 2023. "Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems," Journal of Global Optimization, Springer, vol. 86(3), pages 621-636, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp96023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/iiasaat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.