IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.09046.html
   My bibliography  Save this paper

Convex optimization over a probability simplex

Author

Listed:
  • James Chok
  • Geoffrey M. Vasil

Abstract

We propose a new iteration scheme, the Cauchy-Simplex, to optimize convex problems over the probability simplex $\{w\in\mathbb{R}^n\ |\ \sum_i w_i=1\ \textrm{and}\ w_i\geq0\}$. Other works have taken steps to enforce positivity or unit normalization automatically but never simultaneously within a unified setting. This paper presents a natural framework for manifestly requiring the probability condition. Specifically, we map the simplex to the positive quadrant of a unit sphere, envisage gradient descent in latent variables, and map the result back in a way that only depends on the simplex variable. Moreover, proving rigorous convergence results in this formulation leads inherently to tools from information theory (e.g. cross entropy and KL divergence). Each iteration of the Cauchy-Simplex consists of simple operations, making it well-suited for high-dimensional problems. We prove that it has a convergence rate of ${O}(1/T)$ for convex functions, and numerical experiments of projection onto convex hulls show faster convergence than similar algorithms. Finally, we apply our algorithm to online learning problems and prove the convergence of the average regret for (1) Prediction with expert advice and (2) Universal Portfolios.

Suggested Citation

  • James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org.
  • Handle: RePEc:arx:papers:2305.09046
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.09046
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangfeng Wang & Junping Zhang & Wenxing Zhang, 2020. "The distance between convex sets with Minkowski sum structure: application to collision detection," Computational Optimization and Applications, Springer, vol. 77(2), pages 465-490, November.
    2. Alexei Gaivoronski & Fabio Stella, 2000. "Stochastic Nonstationary Optimization for Finding Universal Portfolios," Annals of Operations Research, Springer, vol. 100(1), pages 165-188, December.
    3. Nalbantov, G.I. & Groenen, P.J.F. & Bioch, J.C., 2006. "Nearest convex hull classification," Econometric Institute Research Papers EI 2006-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    5. Immanuel M. Bomze & Francesco Rinaldi & Damiano Zeffiro, 2021. "Frank–Wolfe and friends: a journey into projection-free first-order optimization methods," 4OR, Springer, vol. 19(3), pages 313-345, September.
    6. Elad Hazan & Satyen Kale, 2015. "An Online Portfolio Selection Algorithm With Regret Logarithmic In Price Variation," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 288-310, April.
    7. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    8. de Klerk, E. & den Hertog, D. & Elabwabi, G., 2008. "On the complexity of optimization over the standard simplex," European Journal of Operational Research, Elsevier, vol. 191(3), pages 773-785, December.
    9. NESTEROV, Yurii, 1999. "Global quadratic optimization on the sets with simplex structure," LIDAM Discussion Papers CORE 1999015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roujia Li & Jia Liu, 2022. "Online Portfolio Selection with Long-Short Term Forecasting," SN Operations Research Forum, Springer, vol. 3(4), pages 1-15, December.
    2. Xingyu Yang & Jin’an He & Hong Lin & Yong Zhang, 2020. "Boosting Exponential Gradient Strategy for Online Portfolio Selection: An Aggregating Experts’ Advice Method," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 231-251, January.
    3. Jin’an He & Shicheng Yin & Fangping Peng, 2024. "Weak aggregating specialist algorithm for online portfolio selection," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2405-2434, June.
    4. Ting-Kam Leonard Wong, 2015. "Universal portfolios in stochastic portfolio theory," Papers 1510.02808, arXiv.org, revised Dec 2016.
    5. Yong Zhang & Xingyu Yang, 2017. "Online Portfolio Selection Strategy Based on Combining Experts’ Advice," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 141-159, June.
    6. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    7. Esther Mohr & Robert Dochow, 2017. "Risk management strategies for finding universal portfolios," Annals of Operations Research, Springer, vol. 256(1), pages 129-147, September.
    8. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    9. Jin’an He & Fangping Peng & Xiuying Xie, 2024. "Risk-adjusted exponential gradient strategies for online portfolio selection," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-25, August.
    10. Yong Zhang & Hong Lin & Lina Zheng & Xingyu Yang, 2022. "Adaptive online portfolio strategy based on exponential gradient updates," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 672-696, April.
    11. Seung-Hyun Moon & Yong-Hyuk Kim & Byung-Ro Moon, 2019. "Empirical investigation of state-of-the-art mean reversion strategies for equity markets," Papers 1909.04327, arXiv.org.
    12. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    13. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    14. R'emi J'ez'equel & Dmitrii M. Ostrovskii & Pierre Gaillard, 2022. "Efficient and Near-Optimal Online Portfolio Selection," Papers 2209.13932, arXiv.org.
    15. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    16. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    17. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    18. Dmitry B. Rokhlin, 2020. "Relative utility bounds for empirically optimal portfolios," Papers 2006.05204, arXiv.org.
    19. Christa Cuchiero & Walter Schachermayer & Ting-Kam Leonard Wong, 2016. "Cover's universal portfolio, stochastic portfolio theory and the numeraire portfolio," Papers 1611.09631, arXiv.org.
    20. Leonard C. MacLean & Yonggan Zhao & William T. Ziemba, 2016. "Optimal capital growth with convex shortfall penalties," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 101-117, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.09046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.