IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1009-d1577641.html
   My bibliography  Save this article

Timing of Preventive Highway Maintenance: A Study from the Whole Life Cycle Perspective

Author

Listed:
  • Abulimiti Wubuli

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China)

  • Fangfang Li

    (School of Science and Technology, Changchun Humanities and Sciences College, Changchun 130117, China)

  • Shanwei Cao

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China)

  • Lingling Zhang

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
    Digital Economy Monitoring, Forecast, Early Warning and Policy Simulation, Philosophy and Social Sciences Laboratory of the Ministry of Education, University of Chinese Academy of Sciences, Beijing 100190, China
    Key Laboratory of Big Data Mining and Knowledge Management, CAS, Beijing 100190, China)

Abstract

As the mileage of China’s highways increases, the focus of highway development has shifted from construction to maintenance and management. With the rapid increase in highway traffic, the overuse of highways, combined with the effects of climate change, has accelerated the occurrence of highway problems and poses new challenges to maintenance strategies. From a system optimization perspective, this paper examines the problem of determining the optimal timing of preventive maintenance on highways. To overcome the shortcomings of this method, which cannot reflect the economic benefits and costs, the total benefits and costs were calculated for different pavement ages within a given analysis period, based on the framework of life cycle analysis. The maintenance timing program with the highest cost-benefit ratio was taken as the optimum maintenance timing program and an example analysis was adopted to validate the feasibility of this method. When the timing of preventive maintenance is later in a pavement’s life cycle, the total life cycle benefit decreases while the total life cycle cost increases. Compared to previous studies, this paper considers both direct and indirect influences simultaneously, showing that indirect influence contributes to shortening the timing of pavement preventive maintenance.

Suggested Citation

  • Abulimiti Wubuli & Fangfang Li & Shanwei Cao & Lingling Zhang, 2025. "Timing of Preventive Highway Maintenance: A Study from the Whole Life Cycle Perspective," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1009-:d:1577641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akcelik, Rahmi, 1989. "Efficiency and drag in the power-based model of fuel consumption," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 376-385, October.
    2. Eric Thompson & David I. Rosenbaum & Arthur P. Hall, 2008. "Evaluating Roads as Investments: A Primer on Benefit-Cost and Economic-Impact Analysis," Technical Reports 080425, Brandmeyer Center for Applied Economics, School of Business, University of Kansas.
    3. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    3. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    5. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    6. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    7. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    8. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    9. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    10. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    11. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    12. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    13. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    14. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    15. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    16. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    17. James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org.
    18. R. Díaz Millán & O. P. Ferreira & J. Ugon, 2023. "Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems," Journal of Global Optimization, Springer, vol. 86(3), pages 621-636, July.
    19. A. de Palma & Y. Nesterov, 2001. "Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives," THEMA Working Papers 2001-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    20. D. J. White, 1993. "A parametric‐based heuristic program for the quadratic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 553-568, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1009-:d:1577641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.