IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/127747.html
   My bibliography  Save this paper

Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions

Author

Listed:
  • Crespo, Marelys
  • Gadat, Sébastien
  • Gendre, Xavier

Abstract

In this paper, we investigate a continuous time version of the Stochastic Langevin Monte Carlo method, introduced in [39], that incorporates a stochastic sampling step inside the traditional overdamped Langevin diffusion. This method is popular in machine learning for sampling posterior distribution. We will pay specific attention in our work to the computational cost in terms of n (the number of observations that produces the posterior distribution), and d (the dimension of the ambient space where the parameter of interest is living). We derive our analysis in the weakly convex framework, which is parameterized with the help of the Kurdyka- Lojasiewicz (KL) inequality, that permits to handle a vanishing curvature settings, which is far less restrictive when compared to the simple strongly convex case. We establish that the final horizon of simulation to obtain an ε approximation (in terms of entropy) is of the order (d log(n)²)(1+r)² [log²(ε−1) + n²d²(1+r) log4(1+r)(n)] with a Poissonian subsampling of parameter n(d log²(n))1+r)−1, where the parameter r is involved in the KL inequality and varies between 0 (strongly convex case) and 1 (limiting Laplace situation).

Suggested Citation

  • Crespo, Marelys & Gadat, Sébastien & Gendre, Xavier, 2023. "Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions," TSE Working Papers 23-1398, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:127747
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2022/wp_tse_1398.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Gadat & Ioana Gavra & Laurent Risser, 2018. "How to Calculate the Barycenter of a Weighted Graph," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1085-1118, November.
    2. Gadat, Sébastien & Panloup, Fabien & Pellegrini, C., 2020. "On the cost of Bayesian posterior mean strategy for log-concave models," TSE Working Papers 20-1155, Toulouse School of Economics (TSE), revised Feb 2022.
    3. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    4. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    2. Chau, Huy N. & Rásonyi, Miklós, 2022. "Stochastic Gradient Hamiltonian Monte Carlo for non-convex learning," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 341-368.
    3. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    4. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    5. Loaiza-Maya, Rubén & Nibbering, Didier & Zhu, Dan, 2024. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Journal of Econometrics, Elsevier, vol. 241(2).
    6. Menz, Georg & Schlichting, André & Tang, Wenpin & Wu, Tianqi, 2022. "Ergodicity of the infinite swapping algorithm at low temperature," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 519-552.
    7. Arnak Dalalyan, 2017. "Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent," Working Papers 2017-21, Center for Research in Economics and Statistics.
    8. Ruben Loaiza-Maya & Didier Nibbering & Dan Zhu, 2023. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Papers 2306.14445, arXiv.org.
    9. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    10. Villeneuve, Stéphane & Bolte, Jérôme & Miclo, Laurent, 2022. "Swarm gradient dynamics for global optimization: the mean-field limit case," TSE Working Papers 22-1302, Toulouse School of Economics (TSE).
    11. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    12. Samuel Livingstone & Giacomo Zanella, 2022. "The Barker proposal: Combining robustness and efficiency in gradient‐based MCMC," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 496-523, April.
    13. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.
    14. M. Barkhagen & S. García & J. Gondzio & J. Kalcsics & J. Kroeske & S. Sabanis & A. Staal, 2023. "Optimising portfolio diversification and dimensionality," Journal of Global Optimization, Springer, vol. 85(1), pages 185-234, January.
    15. Crespo, Marelys, 2024. "Discretisation of Langevin diffusion in the weak log-concave case," TSE Working Papers 24-1506, Toulouse School of Economics (TSE).
    16. Brosse, Nicolas & Durmus, Alain & Moulines, Éric & Sabanis, Sotirios, 2019. "The tamed unadjusted Langevin algorithm," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3638-3663.
    17. Ghaderi, Susan & Ahookhosh, Masoud & Arany, Adam & Skupin, Alexander & Patrinos, Panagiotis & Moreau, Yves, 2024. "Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    18. Sotirios Sabanis & Ying Zhang, 2020. "A fully data-driven approach to minimizing CVaR for portfolio of assets via SGLD with discontinuous updating," Papers 2007.01672, arXiv.org.
    19. Peiyi Zhang & Tianning Dong & Faming Liang, 2024. "An extended Langevinized ensemble Kalman filter for non-Gaussian dynamic systems," Computational Statistics, Springer, vol. 39(6), pages 3347-3372, September.
    20. Steffen Borgwardt, 2022. "An LP-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycenters," Operational Research, Springer, vol. 22(2), pages 1511-1551, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:127747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.