IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i10p3638-3663.html
   My bibliography  Save this article

The tamed unadjusted Langevin algorithm

Author

Listed:
  • Brosse, Nicolas
  • Durmus, Alain
  • Moulines, Éric
  • Sabanis, Sotirios

Abstract

In this article, we consider the problem of sampling from a probability measure π having a density on Rd proportional to x↦e−U(x). The Euler discretization of the Langevin stochastic differential equation (SDE) is known to be unstable, when the potential U is superlinear. Based on previous works on the taming of superlinear drift coefficients for SDEs, we introduce the Tamed Unadjusted Langevin Algorithm (TULA) and obtain non-asymptotic bounds in V-total variation norm and Wasserstein distance of order 2 between the iterates of TULA and π, as well as weak error bounds. Numerical experiments are presented which support our findings.

Suggested Citation

  • Brosse, Nicolas & Durmus, Alain & Moulines, Éric & Sabanis, Sotirios, 2019. "The tamed unadjusted Langevin algorithm," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3638-3663.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:3638-3663
    DOI: 10.1016/j.spa.2018.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918305635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mattingly, J. C. & Stuart, A. M. & Higham, D. J., 2002. "Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise," Stochastic Processes and their Applications, Elsevier, vol. 101(2), pages 185-232, October.
    2. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    2. Yuyun Hidayat & Titi Purwandari & Subiyanto & Sukono, 2021. "Identifying Unwanted Conditions through Chaotic Area Determination in the Context of Indonesia’s Economic Resilience at the City Level," Sustainability, MDPI, vol. 13(9), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemaire, Vincent, 2007. "An adaptive scheme for the approximation of dissipative systems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1491-1518, October.
    2. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    3. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    4. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    5. Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
    6. Loaiza-Maya, Rubén & Nibbering, Didier & Zhu, Dan, 2024. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Journal of Econometrics, Elsevier, vol. 241(2).
    7. Menz, Georg & Schlichting, André & Tang, Wenpin & Wu, Tianqi, 2022. "Ergodicity of the infinite swapping algorithm at low temperature," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 519-552.
    8. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    9. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    10. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    11. Birrell, Jeremiah & Herzog, David P. & Wehr, Jan, 2012. "The transition from ergodic to explosive behavior in a family of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1519-1539.
    12. Arnak Dalalyan, 2017. "Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent," Working Papers 2017-21, Center for Research in Economics and Statistics.
    13. Ruben Loaiza-Maya & Didier Nibbering & Dan Zhu, 2023. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Papers 2306.14445, arXiv.org.
    14. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    15. Villeneuve, Stéphane & Bolte, Jérôme & Miclo, Laurent, 2022. "Swarm gradient dynamics for global optimization: the mean-field limit case," TSE Working Papers 22-1302, Toulouse School of Economics (TSE).
    16. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    17. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    18. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    19. Qiu Lin & Ruisheng Qi, 2023. "Optimal Weak Order and Approximation of the Invariant Measure with a Fully-Discrete Euler Scheme for Semilinear Stochastic Parabolic Equations with Additive Noise," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    20. Ganguly, Arnab & Sundar, P., 2021. "Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 74-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:10:p:3638-3663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.