IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i6d10.1007_s00180-023-01443-4.html
   My bibliography  Save this article

An extended Langevinized ensemble Kalman filter for non-Gaussian dynamic systems

Author

Listed:
  • Peiyi Zhang

    (Purdue University)

  • Tianning Dong

    (Purdue University)

  • Faming Liang

    (Purdue University)

Abstract

State estimation for large-scale non-Gaussian dynamic systems remains an unresolved issue, given nonscalability of the existing particle filter algorithms. To address this issue, this paper extends the Langevinized ensemble Kalman filter (LEnKF) algorithm to non-Gaussian dynamic systems by introducing a latent Gaussian measurement variable to the dynamic system. The extended LEnKF algorithm can converge to the right filtering distribution as the number of stages become large, while inheriting the scalability of the LEnKF algorithm with respect to the sample size and state dimension. The performance of the extended LEnKF algorithm is illustrated by dynamic network embedding and dynamic Poisson spatial models.

Suggested Citation

  • Peiyi Zhang & Tianning Dong & Faming Liang, 2024. "An extended Langevinized ensemble Kalman filter for non-Gaussian dynamic systems," Computational Statistics, Springer, vol. 39(6), pages 3347-3372, September.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01443-4
    DOI: 10.1007/s00180-023-01443-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01443-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01443-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/6072 is not listed on IDEAS
    2. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    3. Matthias Katzfuss & Jonathan R. Stroud & Christopher K. Wikle, 2020. "Ensemble Kalman Methods for High-Dimensional Hierarchical Dynamic Space-Time Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 866-885, April.
    4. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    2. Guanzhou Wei & Venkat Krishnan & Yu Xie & Manajit Sengupta & Yingchen Zhang & Haitao Liao & Xiao Liu, 2024. "A Statistical Model for Multisource Remote-Sensing Data Streams of Wildfire Aerosol Optical Depth," INFORMS Joural on Data Science, INFORMS, vol. 3(2), pages 162-178, October.
    3. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    4. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    5. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    6. Ick Hoon Jin & Minjeong Jeon & Michael Schweinberger & Jonghyun Yun & Lizhen Lin, 2022. "Multilevel network item response modelling for discovering differences between innovation and regular school systems in Korea," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1225-1244, November.
    7. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    8. Crespo, Marelys & Gadat, Sébastien & Gendre, Xavier, 2023. "Stochastic Langevin Monte Carlo for (weakly) log-concave posterior distributions," TSE Working Papers 23-1398, Toulouse School of Economics (TSE).
    9. Zhu, Xuening & Wang, Weining & Wang, Hansheng & Härdle, Wolfgang Karl, 2019. "Network quantile autoregression," Journal of Econometrics, Elsevier, vol. 212(1), pages 345-358.
    10. Murray Pollock & Paul Fearnhead & Adam M. Johansen & Gareth O. Roberts, 2020. "Quasi‐stationary Monte Carlo and the ScaLE algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1167-1221, December.
    11. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    12. Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
    13. Domenico Di Gangi & Giacomo Bormetti & Fabrizio Lillo, 2022. "Score Driven Generalized Fitness Model for Sparse and Weighted Temporal Networks," Papers 2202.09854, arXiv.org, revised Mar 2022.
    14. Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.
    15. Tracy Sweet & Samrachana Adhikari, 2020. "A Latent Space Network Model for Social Influence," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 251-274, June.
    16. Minjeong Jeon & Ick Hoon Jin & Michael Schweinberger & Samuel Baugh, 2021. "Mapping Unobserved Item–Respondent Interactions: A Latent Space Item Response Model with Interaction Map," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 378-403, June.
    17. Michael Schweinberger, 2020. "Statistical inference for continuous‐time Markov processes with block structure based on discrete‐time network data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 342-362, August.
    18. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Mamatzakis, Emmanuel C. & Tsionas, Mike G., 2021. "Making inference of British household's happiness efficiency: A Bayesian latent model," European Journal of Operational Research, Elsevier, vol. 294(1), pages 312-326.
    20. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01443-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.