IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v151y2022icp519-552.html
   My bibliography  Save this article

Ergodicity of the infinite swapping algorithm at low temperature

Author

Listed:
  • Menz, Georg
  • Schlichting, André
  • Tang, Wenpin
  • Wu, Tianqi

Abstract

Sampling Gibbs measures at low temperatures is an important but computationally challenging task. Numerical evidence suggests that the infinite-swapping algorithm (isa) is a promising method. The isa can be seen as an improvement of the parallel tempering replica method. We rigorously analyze the ergodic properties of the isa in the low temperature regime, deducing asymptotic estimates for the spectral gap (or Poincaré constant), optimal in dimension one, and an estimate for the log-Sobolev constant. Our main results indicate that the effective energy barrier can be reduced drastically using the isa compared to the classical over-damped Langevin dynamics. As a corollary, we derive a concentration inequality showing that sampling is also improved by an exponential factor. Finally, we study simulated annealing for the isa and prove that the isa again outperforms the over-damped Langevin dynamics.

Suggested Citation

  • Menz, Georg & Schlichting, André & Tang, Wenpin & Wu, Tianqi, 2022. "Ergodicity of the infinite swapping algorithm at low temperature," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 519-552.
  • Handle: RePEc:eee:spapps:v:151:y:2022:i:c:p:519-552
    DOI: 10.1016/j.spa.2022.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492200151X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koulamas, C & Antony, SR & Jaen, R, 1994. "A survey of simulated annealing applications to operations research problems," Omega, Elsevier, vol. 22(1), pages 41-56, January.
    2. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mu-Chen, 2001. "Tolerance synthesis by neural learning and nonlinear programming," International Journal of Production Economics, Elsevier, vol. 70(1), pages 55-65, March.
    2. Tengyuan Liang & Weijie J. Su, 2019. "Statistical inference for the population landscape via moment‐adjusted stochastic gradients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 431-456, April.
    3. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
    4. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    5. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    6. P Chen & C-C Wu & W-C Lee, 2006. "A bi-criteria two-machine flowshop scheduling problem with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1113-1125, September.
    7. Loaiza-Maya, Rubén & Nibbering, Didier & Zhu, Dan, 2024. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Journal of Econometrics, Elsevier, vol. 241(2).
    8. Alkhamis, Talal M. & Hasan, Merza & Ahmed, Mohamed A., 1998. "Simulated annealing for the unconstrained quadratic pseudo-Boolean function," European Journal of Operational Research, Elsevier, vol. 108(3), pages 641-652, August.
    9. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    10. Arnak Dalalyan, 2017. "Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent," Working Papers 2017-21, Center for Research in Economics and Statistics.
    11. Ruben Loaiza-Maya & Didier Nibbering & Dan Zhu, 2023. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Papers 2306.14445, arXiv.org.
    12. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    13. Villeneuve, Stéphane & Bolte, Jérôme & Miclo, Laurent, 2022. "Swarm gradient dynamics for global optimization: the mean-field limit case," TSE Working Papers 22-1302, Toulouse School of Economics (TSE).
    14. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    15. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "Efficient formation of storage classes for warehouse storage location assignment: A simulated annealing approach," Omega, Elsevier, vol. 36(4), pages 609-618, August.
    16. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    17. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    18. Pablo Adasme & Ali Dehghan Firoozabadi, 2019. "Facility Location with Tree Topology and Radial Distance Constraints," Complexity, Hindawi, vol. 2019, pages 1-29, November.
    19. Yang, Jun & Roberts, Gareth O. & Rosenthal, Jeffrey S., 2020. "Optimal scaling of random-walk metropolis algorithms on general target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6094-6132.
    20. Krystel K. Castillo-Villar, 2014. "Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future," Energies, MDPI, vol. 7(11), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:151:y:2022:i:c:p:519-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.