IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v7y2019i2d10.1007_s13675-018-0101-2.html
   My bibliography  Save this article

Alternative SDP and SOCP approximations for polynomial optimization

Author

Listed:
  • Xiaolong Kuang

    (Lehigh University)

  • Bissan Ghaddar

    (University of Western Ontario)

  • Joe Naoum-Sawaya

    (University of Western Ontario)

  • Luis F. Zuluaga

    (Lehigh University)

Abstract

In theory, hierarchies of semidefinite programming (SDP) relaxations based on sum of squares (SOS) polynomials have been shown to provide arbitrarily close approximations for a general polynomial optimization problem (POP). However, due to the computational challenge of solving SDPs, it becomes difficult to use SDP hierarchies for large-scale problems. To address this, hierarchies of second-order cone programming (SOCP) relaxations resulting from a restriction of the SOS polynomial condition have been recently proposed to approximate POPs. Here, we consider alternative ways to use the SOCP restrictions of the SOS condition. In particular, we show that SOCP hierarchies can be effectively used to strengthen hierarchies of linear programming relaxations for POPs. Specifically, we show that this solution approach is substantially more effective in finding solutions of certain POPs for which the more common hierarchies of SDP relaxations are known to perform poorly. Furthermore, when the feasible set of the POP is compact, these SOCP hierarchies converge to the POP’s optimal value.

Suggested Citation

  • Xiaolong Kuang & Bissan Ghaddar & Joe Naoum-Sawaya & Luis F. Zuluaga, 2019. "Alternative SDP and SOCP approximations for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 153-175, June.
  • Handle: RePEc:spr:eurjco:v:7:y:2019:i:2:d:10.1007_s13675-018-0101-2
    DOI: 10.1007/s13675-018-0101-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-018-0101-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-018-0101-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Dickinson & Janez Povh, 2015. "On an extension of Pólya’s Positivstellensatz," Journal of Global Optimization, Springer, vol. 61(4), pages 615-625, April.
    2. de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Discussion Paper 2007-44, Tilburg University, Center for Economic Research.
    3. Polyxeni-Margarita Kleniati & Panos Parpas & Berç Rustem, 2010. "Partitioning procedure for polynomial optimization," Journal of Global Optimization, Springer, vol. 48(4), pages 549-567, December.
    4. de Klerk, E. & Sotirov, R., 2010. "Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem," Other publications TiSEM 73287c80-3bc2-40c4-b02d-4, Tilburg University, School of Economics and Management.
    5. Jean B. Lasserre & Kim-Chuan Toh & Shouguang Yang, 2017. "A bounded degree SOS hierarchy for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 87-117, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Fischetti & Michele Monaci & Domenico Salvagnin, 2012. "Three Ideas for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 60(4), pages 954-964, August.
    2. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    3. Samuel Burer & Sunyoung Kim & Masakazu Kojima, 2014. "Faster, but weaker, relaxations for quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 59(1), pages 27-45, October.
    4. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
    5. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    6. Peter J. C. Dickinson & Janez Povh, 2019. "A new approximation hierarchy for polynomial conic optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 37-67, May.
    7. Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
    8. Brosch, Daniel & de Klerk, Etienne, 2021. "Jordan symmetry reduction for conic optimization over the doubly nonnegative cone: Theory and software," Other publications TiSEM 283da78a-b42f-47b4-b2b7-2, Tilburg University, School of Economics and Management.
    9. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    10. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Other publications TiSEM 12999d3d-956a-4660-9ae4-5, Tilburg University, School of Economics and Management.
    11. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
    12. Meng-Meng Zheng & Zheng-Hai Huang & Sheng-Long Hu, 2022. "Unconstrained minimization of block-circulant polynomials via semidefinite program in third-order tensor space," Journal of Global Optimization, Springer, vol. 84(2), pages 415-440, October.
    13. Andries Steenkamp, 2023. "Convex scalarizations of the mean-variance-skewness-kurtosis problem in portfolio selection," Papers 2302.10573, arXiv.org.
    14. Tong Chen & Jean-Bernard Lasserre & Victor Magron & Edouard Pauwels, 2022. "A sublevel moment-SOS hierarchy for polynomial optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 31-66, January.
    15. Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
    16. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    17. Faizan Ahmed & Georg Still, 2021. "Two methods for the maximization of homogeneous polynomials over the simplex," Computational Optimization and Applications, Springer, vol. 80(2), pages 523-548, November.
    18. José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
    19. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
    20. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:7:y:2019:i:2:d:10.1007_s13675-018-0101-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.