IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20240021.html
   My bibliography  Save this paper

On weighted-egalitarian values for cooperative games

Author

Listed:
  • Zhengxing Zou

    (Beijing Jiaotong University and University of Toronto)

  • René van den Brink

    (Vrije Universiteit Amsterdam)

  • Yukihiko Funaki

    (Waseda University)

Abstract

We propose and characterize weighted-egalitarian values for cooperative transferable utility games. Each weighted-egalitarian value divides the worth of the grand coalition into two parts and allocates them through equality and proportionality based on exogenous player weights. We characterize the family of all weighted-egalitarian values by employing the standard axioms of efficiency and linearity, in addition to two novel axioms: ω-ratio invariance for symmetric players and symmetry in weights. We then show that relaxing linearity to additivity and adding coalitional monotonicity results in a sub- family of affine combinations of equal division and weighted division values. Furthermore, using an axiom called monotonicity in weights, we characterize the family of convex combinations of equal division and weighted division values.

Suggested Citation

  • Zhengxing Zou & René van den Brink & Yukihiko Funaki, 2024. "On weighted-egalitarian values for cooperative games," Tinbergen Institute Discussion Papers 24-021/II, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20240021
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/24021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levy, Anat & Mclean, Richard P., 1989. "Weighted coalition structure values," Games and Economic Behavior, Elsevier, vol. 1(3), pages 234-249, September.
    2. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    3. Geoffroy de Clippel & Kareen Rozen, 2022. "Fairness through the Lens of Cooperative Game Theory: An Experimental Approach," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 810-836, August.
    4. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    5. Thomson,William, 2019. "How to Divide When There Isn't Enough," Cambridge Books, Cambridge University Press, number 9781107194625, October.
    6. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    7. Thomson,William, 2019. "How to Divide When There Isn't Enough," Cambridge Books, Cambridge University Press, number 9781316646441, October.
    8. Zou, Zhengxing & van den Brink, René & Funaki, Yukihiko, 2021. "Compromising between the proportional and equal division values," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    9. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2022. "On the axiomatic approach to sharing the revenues from broadcasting sports leagues," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 321-347, February.
    10. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    11. Kongo, Takumi, 2019. "Players’ nullification and the weighted (surplus) division values," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    12. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
    13. Herve Moulin, 2004. "Fair Division and Collective Welfare," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633116, April.
    14. Calvo, Emilio & Gutiérrez-López, Esther, 2014. "Axiomatic characterizations of the weighted solidarity values," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 6-11.
    15. Casajus, André & Huettner, Frank, 2014. "Weakly monotonic solutions for cooperative games," Journal of Economic Theory, Elsevier, vol. 154(C), pages 162-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenzhong & Xu, Genjiu & van den Brink, René, 2024. "Sign properties and axiomatizations of the weighted division values," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    2. Zou, Zhengxing & van den Brink, René, 2020. "Equal loss under separatorization and egalitarian values," Economics Letters, Elsevier, vol. 194(C).
    3. Zhengxing Zou & René Brink & Yukihiko Funaki, 2022. "Sharing the surplus and proportional values," Theory and Decision, Springer, vol. 93(1), pages 185-217, July.
    4. Manfred Besner, 2022. "Harsanyi support levels solutions," Theory and Decision, Springer, vol. 93(1), pages 105-130, July.
    5. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    6. Estela Sánchez-Rodríguez & Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Iago Núñez Lugilde, 2024. "Coalition-weighted Shapley values," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 547-577, June.
    7. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    8. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    9. Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.
    10. Besner, Manfred, 2018. "Two classes of weighted values for coalition structures with extensions to level structures," MPRA Paper 87742, University Library of Munich, Germany.
    11. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    12. Victor Ginsburgh & Juan D. Moreno‐Ternero, 2022. "Brexit and multilingualism in the European Union," Metroeconomica, Wiley Blackwell, vol. 73(2), pages 708-731, May.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    14. Macho-Stadler, Inés & Pérez-Castrillo, David & Wettstein, David, 2018. "Values for environments with externalities – The average approach," Games and Economic Behavior, Elsevier, vol. 108(C), pages 49-64.
    15. Zou, Zhengxing & Tan, Zhibin, 2023. "Axiomatizations of convex compromise rules for redistribution of non-negative income," Economics Letters, Elsevier, vol. 229(C).
    16. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    17. Bas Dietzenbacher, 2023. "Generalizing the constrained equal awards rule," Theory and Decision, Springer, vol. 95(1), pages 131-150, July.
    18. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    19. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    20. Donald Nganmegni Njoya & Issofa Moyouwou & Nicolas Gabriel Andjiga, 2021. "The equal-surplus Shapley value for chance-constrained games on finite sample spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 463-499, June.

    More about this item

    Keywords

    cooperative game; axiomatization; equal division value; weighted division value; equality;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.