IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/82978.html
   My bibliography  Save this paper

Weighted Shapley levels values

Author

Listed:
  • Besner, Manfred

Abstract

This paper presents a collection of four different classes of weighted Shapley levels values. All classes contain generalisations of the weighted Shapley values to cooperative games with a level structure. The first class is an upgrade of the weighted Shapley levels value in Gómez-Rúa and Vidal-Puga (2011), who use the size of components as weights. The following classes contain payoff vectors from the Harsanyi set. Hence they satisfy the dummy axiom, in contrary to the values in the first class in general. The second class contains extensions of the McLean weighted coalition structure values (Dragan, 1992; Levy and McLean, 1989; McLean, 1991). The first two classes satisfy the level game property (the payoff to all players of a component sum up to the payoff to the component in a game where components are the players) and the last two classes meet a null player out property. As a special case, the first three classes include the Shapley levels value and the last class contains a new extension of the Shapley value.

Suggested Citation

  • Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:82978
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/82978/1/MPRA_paper_82978.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/83101/1/MPRA_paper_83101.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/83155/1/MPRA_paper_83155.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    2. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    3. André Casajus, 2010. "Another characterization of the Owen value without the additivity axiom," Theory and Decision, Springer, vol. 69(4), pages 523-536, October.
    4. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    5. Sergiu Hart, 2006. "Shapley Value," Discussion Paper Series dp421, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
    7. Anna Khmelnitskaya & Elena Yanovskaya, 2007. "Owen coalitional value without additivity axiom," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 255-261, October.
    8. Calvo, Emilio & Javier Lasaga, J. & Winter, Eyal, 1996. "The principle of balanced contributions and hierarchies of cooperation," Mathematical Social Sciences, Elsevier, vol. 31(3), pages 171-182, June.
    9. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    10. Winter, Eyal, 2002. "The shapley value," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 53, pages 2025-2054, Elsevier.
    11. Chun, Youngsub, 1989. "A new axiomatization of the shapley value," Games and Economic Behavior, Elsevier, vol. 1(2), pages 119-130, June.
    12. McLean, Richard P, 1991. "Random Order Coalition Structure Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 109-127.
    13. Levy, Anat & Mclean, Richard P., 1989. "Weighted coalition structure values," Games and Economic Behavior, Elsevier, vol. 1(3), pages 234-249, September.
    14. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    15. Radzik, Tadeusz, 2012. "A new look at the role of players’ weights in the weighted Shapley value," European Journal of Operational Research, Elsevier, vol. 223(2), pages 407-416.
    16. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    17. Winter, Eyal, 1989. "A Value for Cooperative Games with Levels Structure of Cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 227-240.
    18. Jean J. M. Derks & Hans H. Haller, 1999. "Null Players Out? Linear Values For Games With Variable Supports," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 301-314.
    19. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    20. Gangolly, Js, 1981. "On Joint Cost Allocation - Independent Cost Proportional Scheme (Icps) And Its Properties," Journal of Accounting Research, Wiley Blackwell, vol. 19(2), pages 299-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besner, Manfred, 2018. "The weighted Shapley support levels values," MPRA Paper 87617, University Library of Munich, Germany.
    2. Besner, Manfred, 2018. "Two classes of weighted values for coalition structures with extensions to level structures," MPRA Paper 87742, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manfred Besner, 2022. "Harsanyi support levels solutions," Theory and Decision, Springer, vol. 93(1), pages 105-130, July.
    2. Besner, Manfred, 2018. "The weighted Shapley support levels values," MPRA Paper 87617, University Library of Munich, Germany.
    3. Besner, Manfred, 2018. "Two classes of weighted values for coalition structures with extensions to level structures," MPRA Paper 87742, University Library of Munich, Germany.
    4. Xun-Feng Hu, 2021. "New axiomatizations of the Owen value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 585-603, June.
    5. Besner, Manfred, 2023. "The per capita Shapley support levels value," MPRA Paper 116457, University Library of Munich, Germany.
    6. Besner, Manfred, 2018. "Player splitting, players merging, the Shapley set value and the Harsanyi set value," MPRA Paper 87125, University Library of Munich, Germany.
    7. Gustavo Bergantiños & Juan Vidal-Puga, 2005. "The Consistent Coalitional Value," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 832-851, November.
    8. Besner, Manfred, 2021. "Disjointly productive players and the Shapley value," MPRA Paper 108241, University Library of Munich, Germany.
    9. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    10. Besner, Manfred, 2021. "Disjointly and jointly productive players and the Shapley value," MPRA Paper 108511, University Library of Munich, Germany.
    11. Manfred Besner, 2019. "Axiomatizations of the proportional Shapley value," Theory and Decision, Springer, vol. 86(2), pages 161-183, March.
    12. Besner, Manfred, 2018. "Proportional Shapley levels values," MPRA Paper 87120, University Library of Munich, Germany.
    13. Xun-Feng Hu, 2020. "The weighted Shapley-egalitarian value for cooperative games with a coalition structure," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 193-212, April.
    14. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    15. Manfred Besner, 2020. "Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(3), pages 851-873, September.
    16. André Casajus & Rodrigue Tido Takeng, 2022. "Second-order productivity, second-order payoffs, and the Owen value," Post-Print hal-03798448, HAL.
    17. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    18. C. Manuel & E. González-Arangüena & R. Brink, 2013. "Players indifferent to cooperate and characterizations of the Shapley value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 1-14, February.
    19. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    20. Besner, Manfred, 2018. "Weighted Shapley hierarchy levels values," MPRA Paper 88160, University Library of Munich, Germany.

    More about this item

    Keywords

    Cooperative game; Level structure; (Weighted) Shapley (levels) value; Weighted proportionality; Harsanyi set; Dividends;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:82978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.