Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sturm, J.F. & Zhang, S., 1995. "Symmetric primal-dual path following algorithms for semidefinite programming," Econometric Institute Research Papers EI 9554-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- NESTEROV ., Yurii E. & TODD , Michael J, 1994. "Self-Scaled Cones and Interior-Point Methods in Nonlinear Programming," LIDAM Discussion Papers CORE 1994062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Sturm, J.F. & Zhang, S., 1996. "On Weighted Centers for Semidefinite Programming," Econometric Institute Research Papers EI 9636-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- NESTEROV , Yurii & TODD , Michael, 1995. "Primal-Dual Interior-Point Methods for Self-Scaled Cones," LIDAM Discussion Papers CORE 1995044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
- Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Discussion Paper 2001-27, Tilburg University, Center for Economic Research.
- Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
- NESTEROV, Yu., 2006. "Towards nonsymmetric conic optimization," LIDAM Discussion Papers CORE 2006028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Alemseged Weldeyesus & Mathias Stolpe, 2015. "A primal-dual interior point method for large-scale free material optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 409-435, June.
- Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Discussion Paper 2002-73, Tilburg University, Center for Economic Research.
- Berkelaar, A.B. & Sturm, J.F. & Zhang, S., 1996. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Econometric Institute Research Papers EI 9667-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
- Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
- Renato D. C. Monteiro & Paulo R. Zanjácomo, 2000. "General Interior-Point Maps and Existence of Weighted Paths for Nonlinear Semidefinite Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 381-399, August.
- Li Yang & Bo Yu, 2013. "A homotopy method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(1), pages 81-96, September.
- NESTEROV, Yu., 2006. "Constructing self-concordant barriers for convex cones," LIDAM Discussion Papers CORE 2006030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gu, G. & Zangiabadi, M. & Roos, C., 2011. "Full Nesterov-Todd step infeasible interior-point method for symmetric optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 473-484, November.
- NESTEROV, Yu., 2006. "Nonsymmetric potential-reduction methods for general cones," LIDAM Discussion Papers CORE 2006034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
- E. de Klerk & C. Roos & T. Terlaky, 1998. "Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 51-69, March.
- Maziar Salahi & Renata Sotirov & Tamás Terlaky, 2004. "On self-regular IPMs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 209-275, December.
- A. D'Aspremont, 2003. "Interest rate model calibration using semidefinite Programming," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(3), pages 183-213.
- Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1997. "Duality Results for Conic Convex Programming," Econometric Institute Research Papers EI 9719/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
Semidefinite Programming; Affine Scaling; Primal-Dual Interior Point Methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:19970025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.