IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/1995044.html
   My bibliography  Save this paper

Primal-Dual Interior-Point Methods for Self-Scaled Cones

Author

Listed:
  • NESTEROV , Yurii
  • TODD , Michael

Abstract

No abstract is available for this item.

Suggested Citation

  • NESTEROV , Yurii & TODD , Michael, 1995. "Primal-Dual Interior-Point Methods for Self-Scaled Cones," LIDAM Discussion Papers CORE 1995044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:1995044
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp1995.html
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
    2. F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
    3. Berkelaar, A.B. & Sturm, J.F. & Zhang, S., 1996. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Econometric Institute Research Papers EI 9667-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. A. D'Aspremont, 2003. "Interest rate model calibration using semidefinite Programming," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(3), pages 183-213.
    5. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1996. "Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming," Econometric Institute Research Papers 9607/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1997. "Duality Results for Conic Convex Programming," Econometric Institute Research Papers EI 9719/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Discussion Paper 2002-73, Tilburg University, Center for Economic Research.
    8. de Klerk, E. & Peng, J. & Roos, C. & Terlaky, T., 2001. "A scaled Gauss-Newton primal-dual search direction for semidefinite optimization," Other publications TiSEM 9d85401c-e9d8-45ee-be2d-2, Tilburg University, School of Economics and Management.
    9. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Li Yang & Bo Yu, 2013. "A homotopy method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(1), pages 81-96, September.
    11. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    12. Gu, G. & Zangiabadi, M. & Roos, C., 2011. "Full Nesterov-Todd step infeasible interior-point method for symmetric optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 473-484, November.
    13. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Discussion Paper 2001-27, Tilburg University, Center for Economic Research.
    14. Alemseged Weldeyesus & Mathias Stolpe, 2015. "A primal-dual interior point method for large-scale free material optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 409-435, June.
    15. NESTEROV, Yu., 2006. "Towards nonsymmetric conic optimization," LIDAM Discussion Papers CORE 2006028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Arjan B. Berkelaar & Jos F. Sturm & Shuzhong Zhang, 1997. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Tinbergen Institute Discussion Papers 97-025/4, Tinbergen Institute.
    17. NESTEROV, Yu., 2006. "Nonsymmetric potential-reduction methods for general cones," LIDAM Discussion Papers CORE 2006034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1995044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.