Nonsymmetric potential-reduction methods for general cones
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- NESTEROV, Yu., 2006. "Constructing self-concordant barriers for convex cones," LIDAM Discussion Papers CORE 2006030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV , Yurii & TODD , Michael, 1995. "Primal-Dual Interior-Point Methods for Self-Scaled Cones," LIDAM Discussion Papers CORE 1995044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- NESTEROV, Yu., 2006. "Towards nonsymmetric conic optimization," LIDAM Discussion Papers CORE 2006028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Robert Chares & François Glineur, 2008.
"An interior-point method for the single-facility location problem with mixed norms using a conic formulation,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
- CHARES, Robert & GLINEUR, François, 2007. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," LIDAM Discussion Papers CORE 2007071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- CHARES, Robert & GLINEUR, François, 2009. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," LIDAM Reprints CORE 2078, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Arjan B. Berkelaar & Jos F. Sturm & Shuzhong Zhang, 1997. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Tinbergen Institute Discussion Papers 97-025/4, Tinbergen Institute.
- Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
- F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
- Da Tian, 2014. "An entire space polynomial-time algorithm for linear programming," Journal of Global Optimization, Springer, vol. 58(1), pages 109-135, January.
- Quoc Tran-Dinh & Anastasios Kyrillidis & Volkan Cevher, 2018. "A Single-Phase, Proximal Path-Following Framework," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1326-1347, November.
- Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Discussion Paper 2001-27, Tilburg University, Center for Economic Research.
- Li Yang & Bo Yu, 2013. "A homotopy method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(1), pages 81-96, September.
- Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
- NESTEROV, Yu., 2006. "Constructing self-concordant barriers for convex cones," LIDAM Discussion Papers CORE 2006030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
- Gu, G. & Zangiabadi, M. & Roos, C., 2011. "Full Nesterov-Todd step infeasible interior-point method for symmetric optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 473-484, November.
- Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
- A. D'Aspremont, 2003. "Interest rate model calibration using semidefinite Programming," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(3), pages 183-213.
- Chris Coey & Lea Kapelevich & Juan Pablo Vielma, 2022. "Solving Natural Conic Formulations with Hypatia.jl," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2686-2699, September.
- NESTEROV, Yu., 2006. "Towards nonsymmetric conic optimization," LIDAM Discussion Papers CORE 2006028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Alemseged Weldeyesus & Mathias Stolpe, 2015. "A primal-dual interior point method for large-scale free material optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 409-435, June.
- Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1997. "Duality Results for Conic Convex Programming," Econometric Institute Research Papers EI 9719/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1996. "Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming," Econometric Institute Research Papers 9607/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2006034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.