IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v61y2015i2p409-435.html
   My bibliography  Save this article

A primal-dual interior point method for large-scale free material optimization

Author

Listed:
  • Alemseged Weldeyesus
  • Mathias Stolpe

Abstract

Free Material Optimization (FMO) is a branch of structural optimization in which the design variable is the elastic material tensor that is allowed to vary over the design domain. The requirements are that the material tensor is symmetric positive semidefinite with bounded trace. The resulting optimization problem is a nonlinear semidefinite program with many small matrix inequalities for which a special-purpose optimization method should be developed. The objective of this article is to propose an efficient primal-dual interior point method for FMO that can robustly and accurately solve large-scale problems. Several equivalent formulations of FMO problems are discussed and recommendations on the best choice based on the results from our numerical experiments are presented. Furthermore, the choice of search direction is also investigated numerically and a recommendation is given. The number of iterations the interior point method requires is modest and increases only marginally with problem size. The computed optimal solutions obtain a higher precision than other available special-purpose methods for FMO. The efficiency and robustness of the method is demonstrated by numerical experiments on a set of large-scale FMO problems. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Alemseged Weldeyesus & Mathias Stolpe, 2015. "A primal-dual interior point method for large-scale free material optimization," Computational Optimization and Applications, Springer, vol. 61(2), pages 409-435, June.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:2:p:409-435
    DOI: 10.1007/s10589-014-9720-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9720-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9720-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    2. NESTEROV ., Yurii E. & TODD , Michael J, 1994. "Self-Scaled Cones and Interior-Point Methods in Nonlinear Programming," LIDAM Discussion Papers CORE 1994062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. NESTEROV , Yurii & TODD , Michael, 1995. "Primal-Dual Interior-Point Methods for Self-Scaled Cones," LIDAM Discussion Papers CORE 1995044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Discussion Paper 2001-27, Tilburg University, Center for Economic Research.
    2. Ali Mohammad-Nezhad & Tamás Terlaky, 2017. "A polynomial primal-dual affine scaling algorithm for symmetric conic optimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 577-600, April.
    3. NESTEROV, Yu., 2006. "Towards nonsymmetric conic optimization," LIDAM Discussion Papers CORE 2006028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    5. Arjan B. Berkelaar & Jos F. Sturm & Shuzhong Zhang, 1997. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Tinbergen Institute Discussion Papers 97-025/4, Tinbergen Institute.
    6. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    7. NESTEROV, Yu., 2006. "Constructing self-concordant barriers for convex cones," LIDAM Discussion Papers CORE 2006030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Gu, G. & Zangiabadi, M. & Roos, C., 2011. "Full Nesterov-Todd step infeasible interior-point method for symmetric optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 473-484, November.
    9. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    10. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Discussion Paper 2002-73, Tilburg University, Center for Economic Research.
    11. de Klerk, E. & Peng, J. & Roos, C. & Terlaky, T., 2001. "A scaled Gauss-Newton primal-dual search direction for semidefinite optimization," Other publications TiSEM 9d85401c-e9d8-45ee-be2d-2, Tilburg University, School of Economics and Management.
    12. Berkelaar, A.B. & Sturm, J.F. & Zhang, S., 1996. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Econometric Institute Research Papers EI 9667-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    14. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    15. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    16. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    18. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    19. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    20. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:2:p:409-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.