IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1364.html
   My bibliography  Save this paper

Symmetric primal-dual path following algorithms for semidefinite programming

Author

Listed:
  • Sturm, J.F.
  • Zhang, S.

Abstract

In this paper a symmetric primal-dual transformation for positive semidefinite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual transformation is a well known fact. Based on this symmetric primal-dual transformation we derive Newton search directions for primal-dual path-following algorithms for semidefinite programming. In particular, we generalize: (1) the short step path following algorithm, (2) the predictor-corrector algorithm and (3) the largest step algorithm to semidefinite programming. It is shown that these algorithms require at most [TeX: ${\\cal O}(\\sqrt{n}\\mid \\log \\epsilon \\mid ) $] main iterations for computing an [TeX: $\\epsilon $]-optimal solution.

Suggested Citation

  • Sturm, J.F. & Zhang, S., 1995. "Symmetric primal-dual path following algorithms for semidefinite programming," Econometric Institute Research Papers EI 9554-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1364
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Klerk, E. & Roos, C. & Terlaky, T., 1997. "Initialization in semidefinite programming via a self-dual, skew-symmetric embedding," Other publications TiSEM aa045849-1e10-4f84-96ca-4, Tilburg University, School of Economics and Management.
    2. F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
    3. E. de Klerk & C. Roos & T. Terlaky, 1998. "Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 51-69, March.
    4. Arjan B. Berkelaar & Jos F. Sturm & Shuzhong Zhang, 1997. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Tinbergen Institute Discussion Papers 97-025/4, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.