IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v99y1998i1d10.1023_a1021700210959.html
   My bibliography  Save this article

Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming

Author

Listed:
  • F. A. Potra

    (University of Iowa)

  • R. Sheng

    (Argonne National Laboratory)

Abstract

We prove the superlinear convergence of the primal-dual infeasible interior-point path-following algorithm proposed recently by Kojima, Shida, and Shindoh and by the present authors, under two conditions: (i) the semidefinite programming problem has a strictly complementary solution; (ii) the size of the central path neighborhood approaches zero. The nondegeneracy condition suggested by Kojima, Shida, and Shindoh is not used in our analysis. Our result implies that the modified algorithm of Kojima, Shida, and Shindoh, which enforces condition (ii) by using additional corrector steps, has superlinear convergence under the standard assumption of strict complementarity. Finally, we point out that condition (ii) can be made weaker and show the superlinear convergence under the strict complementarity assumption and a weaker condition than (ii).

Suggested Citation

  • F. A. Potra & R. Sheng, 1998. "Superlinear Convergence of Interior-Point Algorithms for Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 103-119, October.
  • Handle: RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021700210959
    DOI: 10.1023/A:1021700210959
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021700210959
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021700210959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shinji Mizuno & Michael J. Todd & Yinyu Ye, 1993. "On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 964-981, November.
    2. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1996. "Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming," Econometric Institute Research Papers 9607/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. NESTEROV , Yurii & TODD , Michael, 1995. "Primal-Dual Interior-Point Methods for Self-Scaled Cones," LIDAM Discussion Papers CORE 1995044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Sturm, J.F. & Zhang, S., 1995. "Symmetric primal-dual path following algorithms for semidefinite programming," Econometric Institute Research Papers EI 9554-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chee-Khian Sim, 2011. "Asymptotic Behavior of Underlying NT Paths in Interior Point Methods for Monotone Semidefinite Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 79-106, January.
    2. Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
    3. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    4. Sungwoo Park, 2016. "A Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 512-527, August.
    5. Ximei Yang & Hongwei Liu & Yinkui Zhang, 2015. "A New Strategy in the Complexity Analysis of an Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 572-587, August.
    6. Hongwei Liu & Ximei Yang & Changhe Liu, 2013. "A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 796-815, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjan B. Berkelaar & Jos F. Sturm & Shuzhong Zhang, 1997. "Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming," Tinbergen Institute Discussion Papers 97-025/4, Tinbergen Institute.
    2. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1996. "Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming," Econometric Institute Research Papers 9607/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Discussion Paper 2002-73, Tilburg University, Center for Economic Research.
    4. Illes, Tibor & Nagy, Marianna, 2007. "A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1097-1111, September.
    5. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. G. Y. Zhao, 1999. "Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 169-192, July.
    7. M. Salahi & T. Terlaky, 2007. "Adaptive Large-Neighborhood Self-Regular Predictor-Corrector Interior-Point Methods for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 143-160, January.
    8. Yinyu Ye, 2005. "A New Complexity Result on Solving the Markov Decision Problem," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 733-749, August.
    9. E. de Klerk & C. Roos & T. Terlaky, 1998. "Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 51-69, March.
    10. Maziar Salahi & Renata Sotirov & Tamás Terlaky, 2004. "On self-regular IPMs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 209-275, December.
    11. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    12. Y. B. Zhao & J. Y. Han, 1999. "Two Interior-Point Methods for Nonlinear P *(τ)-Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 659-679, September.
    13. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    14. M. Sayadi Shahraki & H. Mansouri & M. Zangiabadi, 2016. "A New Primal–Dual Predictor–Corrector Interior-Point Method for Linear Programming Based on a Wide Neighbourhood," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 546-561, August.
    15. R. D. C. Monteiro & Jong-Shi Pang, 1998. "On Two Interior-Point Mappings for Nonlinear Semidefinite Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 39-60, February.
    16. Behrouz Kheirfam, 2014. "A New Complexity Analysis for Full-Newton Step Infeasible Interior-Point Algorithm for Horizontal Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 853-869, June.
    17. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    18. Yang, Yaguang, 2011. "A polynomial arc-search interior-point algorithm for convex quadratic programming," European Journal of Operational Research, Elsevier, vol. 215(1), pages 25-38, November.
    19. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    20. A. D'Aspremont, 2003. "Interest rate model calibration using semidefinite Programming," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(3), pages 183-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021700210959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.